- •Е.В.Михеева, н.П.Пикула, м.И.Тартынова физическая химия
- •Введение
- •1. Химическая термодинамика Основные понятия химической термодинамики
- •Первое начало термодинамики
- •Формулировки первого начала термодинамики
- •Вычисление работы расширения идеальных газов в термодинамических процессах
- •Термохимия. Закон Гесса
- •Условия выполнения закона Гесса
- •Термодинамическое обоснование закона Гесса
- •Связь между Qp и qv
- •Следствия из закона Гесса. Методы расчета тепловых эффектов химических реакций
- •1. Расчет по стандартным теплотам образования
- •2. Расчет по стандартным теплотам сгорания
- •Метод термохимических уравнений
- •4. Метод термохимических схем
- •Теплоемкость
- •Теплоемкость идеального газа
- •Теплоемкость жидких и твердых тел
- •Эмпирические правила расчета теплоемкости
- •Влияние температуры на теплоемкость
- •Зависимость теплового эффекта химической реакции от температуры. Закон Кирхгофа
- •Исследование уравнения Кирхгофа
- •Расчет тепловых эффектов химических реакций по уравнению Кирхгофа
- •Второе начало термодинамики
- •Основные понятия и определения
- •Второе начало термодинамики. Энтропия
- •Формулировки второго начала термодинамики
- •Физический смысл энтропии
- •Статистическая природа второго начала термодинамики
- •Математическая запись второго начала термодинамики для обратимых процессов
- •Математическая запись второго начала термодинамики для необратимых процессов
- •Изменение энтропии как критерий направления процесса в изолированной системе
- •Расчет изменения энтропии в различных процессах
- •6. Расчет изменения энтропии для химической реакции по значениям стандартных абсолютных энтропий
- •Термодинамические потенциалы
- •Энергия Гиббса Физический смысл энергии Гиббса
- •Энергия Гиббса как критерий направления процесса
- •Расчет изменения энергии Гиббса в различных процессах
- •Энергия Гельмгольца Физический смысл энергии Гельмгольца
- •Энергия Гельмгольца как критерий направления процесса
- •Расчет изменения энергии Гельмгольца в различных процессах
- •1. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия n моль идеального газа
- •2. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия жидких и твердых тел
- •3. Расчет изменения энергии Гельмгольца в обратимо работающем электрохимическом элементе
- •Характеристические функции. Уравнения Гиббса – Гельмгольца
- •Химический потенциал
- •Условие равновесия в системе с переменным числом моль
- •Зависимость химического потенциала от давления
- •1. Область малых давлений (идеальный газ)
- •2. Область высоких давлений (реальные газы)
- •2. Химическое равновесие
- •Закон действующих масс
- •Уравнение изотермы химической реакции
- •Определение направления процесса по изотерме химической реакции
- •Уравнение химического сродства. Стандартная энергия Гиббса реакции
- •Различные способы выражения константы равновесия
- •Зависимость константы равновесия от температуры
- •Интегрирование уравнения изобары химической реакции
- •Влияние давления и температуры на химическое равновесие. Принцип Ле-Шателье
- •1. Влияние давления на смещение химического равновесия
- •2. Влияние температуры на равновесие химической реакции
- •Гетерогенное химическое равновесие
- •Расчет химического равновесия. Термическая диссоциация
- •3. Фазовое равновесие Основные понятия и определения
- •Основной закон фазового равновесия. Правило фаз Гиббса
- •Фазовое равновесие в однокомпонентной системе. Диаграммы состояния однокомпонентных систем
- •Уравнение Клапейрона - Клаузиуса
- •Применение уравнения Клапейрона – Клаузиуса к процессам испарения и возгонки
- •Расчет теплоты испарения и возгонки по уравнению Клапейрона – Клаузиуса
- •Однокомпонентные гетерогенные системы
- •Диаграмма состояния воды
- •Диаграмма состояния серы
- •Фазовое равновесие в двухкомпонентной системе. Диаграммы состояния двухкомпонентных систем Физико-химический анализ. Термический анализ
- •Фазовые диаграммы состояния двухкомпонентных систем
- •Диаграмма состояния системы с эвтектикой
- •Определение количественных соотношений между фазами. Правило рычага
- •Химические соединения
- •Фазовая диаграмма с конгруэнтно плавящимся химическим соединением
- •Фазовая диаграмма с инконгруэнтно плавящимся химическим соединением
- •Твердые растворы
- •Фазовая диаграмма с неограниченной растворимостью компонентов в твердом состоянии
- •Фазовые диаграммы с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграммы состояния с ограниченной растворимостью компонентов с эвтектикой (I типа)
- •Диаграммы состояния с ограниченной растворимостью компонентов с перитектикой (II типа)
- •Диаграммы состояния эвтектического типа с полиморфизмом компонентов
- •Сложные диаграммы состояния Диаграмма плавкости системы Al – Ni
- •Диаграмма состояния системы Fe-Fe3c
- •4. Растворы Общая характеристика растворов
- •Различные способы выражения концентрации растворов
- •Парциальные молярные величины и их значение в термодинамике растворов
- •Основные соотношения между парциальными молярными величинами
- •Аддитивные и неаддитивные свойства растворов
- •Типы растворов
- •Идеальные растворы
- •Предельно разбавленные растворы
- •Неидеальные растворы
- •Давление насыщенного пара компонента над раствором
- •Повышение температуры кипения растворов нелетучих веществ
- •Понижение температуры замерзания растворов нелетучих веществ
- •Осмотическое давление раствора
- •5. Электрохимия
- •Константа диссоциации слабого электролита
- •Ионное произведение воды. РН раствора
- •Сильные электролиты
- •Электрическая проводимость растворов электролитов
- •Кондуктометрия
- •Электролиз
- •Правила записи реакций на электродах при электролизе
- •Законы Фарадея
- •Числа переноса
- •Электродвижущие силы электрохимических элементов Основные понятия и определения
- •Правила записи электрохимических элементов
- •Электродные потенциалы
- •Типы электродов
- •Электроды первого рода
- •Электроды второго рода
- •Связь между электродами первого и второго рода
- •Окислительно-восстановительные электроды
- •Электрохимические элементы
- •Химические цепи
- •Химические цепи с двумя электролитами
- •Химические цепи с одним электролитом
- •Концентрационные цепи
- •Концентрационные цепи без переноса ионов
- •Концентрационные цепи c переносом ионов
- •6. Химическая кинетика
- •Основные понятия химической кинетики
- •Скорость химической реакции
- •Закон действующих масс
- •Формальная кинетика
- •Решение кинетических задач методами формальной кинетики
- •Односторонние реакции первого порядка
- •Односторонние реакции второго порядка
- •Односторонние реакции третьего порядка
- •Зависимость скорости реакции от температуры
- •Методы определения энергии активации
- •Теории химической кинетики
- •Теория активных столкновений
- •Теория активированного комплекса
- •7. Катализ Основные понятия. Основные свойства катализатора
- •Гомогенный катализ
- •Гетерогенный катализ
- •8. Дисперсные системы Основные понятия и определения
- •Признаки объектов коллоидной химии
- •Специфические особенности высокодисперсных систем
- •Классификации дисперсных систем
- •1. Классификация по размерам частиц дисперсной фазы
- •2. Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.
- •9. Поверхностные явления Термодинамика поверхностных явлений
- •Поверхностное натяжение Физический смысл поверхностного натяжения
- •Термодинамическое определение поверхностного натяжения
- •Влияние температуры
- •Влияние природы граничащих фаз
- •Смачивание
- •Анализ уравнения Юнга
- •Флотация
- •Особенности искривленной поверхности раздела фаз
- •Капиллярное давление. Течение жидкости в капиллярах
- •Анализ уравнения Жюрена
- •Адсорбция Основные понятия и определения
- •Классификации адсорбции
- •1. Классификация по природе границы раздела
- •2.Классификация по типу взаимодействия адсорбата и адсорбента
- •Основные характеристики адсорбции
- •Основные экспериментальные зависимости адсорбции
- •Адсорбция на границе твердое тело – газ Теория мономолекулярной адсорбции Лэнгмюра Основные положения
- •Расчет констант уравнения Лэнгмюра
- •Адсорбция на границе жидкость – газ Особенность границы раздела жидкой и газообразной фаз
- •Фундаментальное уравнение адсорбции Гиббса
- •Свойства поверхностно-активных (пав) и поверхностно-инактивных (пив) веществ
- •Строение адсорбционного слоя на границе раствор - газ
- •Перечень используемой литературы
- •Содержание
Первое начало термодинамики
Первое начало термодинамики является постулатом, который был раскрыт и сформулирован в результате обобщения человеческого опыта и связан с законом сохранения энергии.
Существует несколько формулировок первого начала термодинамики, равноценных друг другу и вытекающих одна из другой.
Формулировки первого начала термодинамики
в любой изолированной системе общий запас энергии остается постоянным;
энергия никуда не исчезает и ни откуда не появляется, различные виды энергии переходят одна в другую в строго эквивалентных количествах;
невозможен вечный двигатель первого рода (Perpetuum mobile), то есть невозможно построить машину, которая производила бы работу, не затрачивая на это соответствующее количество энергии;
Из первого начала термодинамики следует, что полученная системой извне теплота Q расходуется на изменение внутренней энергии ΔU системы и совершение работы W. Математическая запись первого начала термодинамики в интегральной форме имеет вид:
. (1.1)
В отличие от внутренней энергии, теплота и работа являются функциями процесса, но не являются функциями состояния системы. Поэтому, математическая запись первого начала термодинамики в дифференциальной форме имеет вид:
, (1.2)
где δQ – бесконечно малое количество теплоты; dU – полный дифференциал внутренней энергии системы; δW – бесконечно малое количество работы.
Под
работой, входящей в математическое
выражение первого начала термодинамики,
понимается общая работа (все виды работ).
В связи с тем, что для многих процессов
единственным видом работы является
работа расширения (работа против внешнего
давления), общую работу (δW),
принято рассматривать как сумму работы
расширения (рdV)
и так называемой полезной работы (
):
. (1.3)
Под полезной работой понимают совокупность всех видов работы (работа поднятия тяжести, работы образования поверхности, работы в электрохимическом элементе и др.) кроме работы расширения. С учетом этого, математическая запись первого начало термодинамики будет иметь вид:
. (1.4)
Вычисление работы расширения идеальных газов в термодинамических процессах
Для многих термодинамических систем единственным видом работы является работа расширения газа, причем многие газы при достаточно низких давлениях и сравнительно высоких температурах приближенно подчиняются законам идеальных газов. Рассмотрим математические соотношения для вычисления работы расширения идеального газа в различных процессах.
При расширении газа совершается работа:
, (1.5)
или в интегральной форме
. (1.6)
Вычисленная по уравнению (1.6) работа представляет собой максимальную работу, которую совершает газ при протекании процесса в условиях, близких к равновесным (в обратимом процессе).
Для интегрирования уравнения (1.6) необходимо знать зависимость между давлением и объемом газа, то есть уравнение состояния газа. Эта зависимость для идеального газа описывается уравнением состояния Менделеева–Клапейрона:
, (1.7)
где n – количество моль идеального газа; R – универсальная газовая постоянная, равная 8,314 Дж/(моль·К).
Рассмотрим выражение для максимальной работы расширения идеального газа в пяти процессах: изобарном, изотермическом, изохорном, изобарно-изотермическом и адиабатическом.
1. Изобарный процесс (p=const).
. (1.8)
Учитывая,
что
,
,
получаем
. (1.9)
Таким образом, в изобарическом процессе работа расширения совершается при нагревании системы. Графически работу расширения в изобарном процессе можно рассчитать как площадь прямоугольника V1EGV2 (рис.1.1).
2. Изотермический процесс (Т=const).
,
где
, (1.10)
отсюда
. (1.11)
Учитывая, что при T=const p1V1=p2V2, получаем
. (1.12)
Графически изотермический процесс представляется кривой AD, а работу расширения в этом процессе – площадью V1EНV2 (рис.1.1).
3. Изохорный процесс (V=const).
. (1.13)
Графически изохорный процесс можно представить прямой V1EF (рис.1.1).
4. Изобарно-изотермический процесс (р, Т=const).
. (1.14)
Учитывая,
что
,
получаем
, (1.15)
где Δn – изменение количества моль газов в результате реакции.
Таким образом, в изобарно-изотермическом процессе работа расширения совершается за счет изменения числа моль газов–участников реакции. Величина Δn может быть положительной и отрицательной, в зависимости от того увеличивается или уменьшается количество моль газов во время процесса. В системе с неизменным числом моль такой процесс невозможен.
5. Адиабатический процесс (Q = 0).
В адиабатическом процессе одновременно изменяются температура и давление газа. В связи с тем, что газ не получает теплоты извне, то работа адиабатического расширения совершается за счет уменьшения внутренней энергии системы и газ охлаждается:
. (1.16)
Приращение внутренней энергии зависит от молярной теплоемкости идеального газа при постоянном объеме:
, (1.17)
отсюда получаем
. (1.18)
Графически адиабатический процесс представляется кривой СВ, а работу расширения в этом процессе – площадью V1ENV2 (рис.1.1).
Рис.1.1. Работа расширения идеального газа при изменении его объема (от V1 до V2 ) в изобарном (1), изотермическом (2), изохорном (3) и адиабатическом (4) процессах.
Из рис.1.1. следует, что наибольшая работа расширения будет совершаться в изобарном процессе, а наименьшая – в адиабатическом, в изохорном процессе работа расширения равна нулю.
