- •Е.В.Михеева, н.П.Пикула, м.И.Тартынова физическая химия
- •Введение
- •1. Химическая термодинамика Основные понятия химической термодинамики
- •Первое начало термодинамики
- •Формулировки первого начала термодинамики
- •Вычисление работы расширения идеальных газов в термодинамических процессах
- •Термохимия. Закон Гесса
- •Условия выполнения закона Гесса
- •Термодинамическое обоснование закона Гесса
- •Связь между Qp и qv
- •Следствия из закона Гесса. Методы расчета тепловых эффектов химических реакций
- •1. Расчет по стандартным теплотам образования
- •2. Расчет по стандартным теплотам сгорания
- •Метод термохимических уравнений
- •4. Метод термохимических схем
- •Теплоемкость
- •Теплоемкость идеального газа
- •Теплоемкость жидких и твердых тел
- •Эмпирические правила расчета теплоемкости
- •Влияние температуры на теплоемкость
- •Зависимость теплового эффекта химической реакции от температуры. Закон Кирхгофа
- •Исследование уравнения Кирхгофа
- •Расчет тепловых эффектов химических реакций по уравнению Кирхгофа
- •Второе начало термодинамики
- •Основные понятия и определения
- •Второе начало термодинамики. Энтропия
- •Формулировки второго начала термодинамики
- •Физический смысл энтропии
- •Статистическая природа второго начала термодинамики
- •Математическая запись второго начала термодинамики для обратимых процессов
- •Математическая запись второго начала термодинамики для необратимых процессов
- •Изменение энтропии как критерий направления процесса в изолированной системе
- •Расчет изменения энтропии в различных процессах
- •6. Расчет изменения энтропии для химической реакции по значениям стандартных абсолютных энтропий
- •Термодинамические потенциалы
- •Энергия Гиббса Физический смысл энергии Гиббса
- •Энергия Гиббса как критерий направления процесса
- •Расчет изменения энергии Гиббса в различных процессах
- •Энергия Гельмгольца Физический смысл энергии Гельмгольца
- •Энергия Гельмгольца как критерий направления процесса
- •Расчет изменения энергии Гельмгольца в различных процессах
- •1. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия n моль идеального газа
- •2. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия жидких и твердых тел
- •3. Расчет изменения энергии Гельмгольца в обратимо работающем электрохимическом элементе
- •Характеристические функции. Уравнения Гиббса – Гельмгольца
- •Химический потенциал
- •Условие равновесия в системе с переменным числом моль
- •Зависимость химического потенциала от давления
- •1. Область малых давлений (идеальный газ)
- •2. Область высоких давлений (реальные газы)
- •2. Химическое равновесие
- •Закон действующих масс
- •Уравнение изотермы химической реакции
- •Определение направления процесса по изотерме химической реакции
- •Уравнение химического сродства. Стандартная энергия Гиббса реакции
- •Различные способы выражения константы равновесия
- •Зависимость константы равновесия от температуры
- •Интегрирование уравнения изобары химической реакции
- •Влияние давления и температуры на химическое равновесие. Принцип Ле-Шателье
- •1. Влияние давления на смещение химического равновесия
- •2. Влияние температуры на равновесие химической реакции
- •Гетерогенное химическое равновесие
- •Расчет химического равновесия. Термическая диссоциация
- •3. Фазовое равновесие Основные понятия и определения
- •Основной закон фазового равновесия. Правило фаз Гиббса
- •Фазовое равновесие в однокомпонентной системе. Диаграммы состояния однокомпонентных систем
- •Уравнение Клапейрона - Клаузиуса
- •Применение уравнения Клапейрона – Клаузиуса к процессам испарения и возгонки
- •Расчет теплоты испарения и возгонки по уравнению Клапейрона – Клаузиуса
- •Однокомпонентные гетерогенные системы
- •Диаграмма состояния воды
- •Диаграмма состояния серы
- •Фазовое равновесие в двухкомпонентной системе. Диаграммы состояния двухкомпонентных систем Физико-химический анализ. Термический анализ
- •Фазовые диаграммы состояния двухкомпонентных систем
- •Диаграмма состояния системы с эвтектикой
- •Определение количественных соотношений между фазами. Правило рычага
- •Химические соединения
- •Фазовая диаграмма с конгруэнтно плавящимся химическим соединением
- •Фазовая диаграмма с инконгруэнтно плавящимся химическим соединением
- •Твердые растворы
- •Фазовая диаграмма с неограниченной растворимостью компонентов в твердом состоянии
- •Фазовые диаграммы с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграммы состояния с ограниченной растворимостью компонентов с эвтектикой (I типа)
- •Диаграммы состояния с ограниченной растворимостью компонентов с перитектикой (II типа)
- •Диаграммы состояния эвтектического типа с полиморфизмом компонентов
- •Сложные диаграммы состояния Диаграмма плавкости системы Al – Ni
- •Диаграмма состояния системы Fe-Fe3c
- •4. Растворы Общая характеристика растворов
- •Различные способы выражения концентрации растворов
- •Парциальные молярные величины и их значение в термодинамике растворов
- •Основные соотношения между парциальными молярными величинами
- •Аддитивные и неаддитивные свойства растворов
- •Типы растворов
- •Идеальные растворы
- •Предельно разбавленные растворы
- •Неидеальные растворы
- •Давление насыщенного пара компонента над раствором
- •Повышение температуры кипения растворов нелетучих веществ
- •Понижение температуры замерзания растворов нелетучих веществ
- •Осмотическое давление раствора
- •5. Электрохимия
- •Константа диссоциации слабого электролита
- •Ионное произведение воды. РН раствора
- •Сильные электролиты
- •Электрическая проводимость растворов электролитов
- •Кондуктометрия
- •Электролиз
- •Правила записи реакций на электродах при электролизе
- •Законы Фарадея
- •Числа переноса
- •Электродвижущие силы электрохимических элементов Основные понятия и определения
- •Правила записи электрохимических элементов
- •Электродные потенциалы
- •Типы электродов
- •Электроды первого рода
- •Электроды второго рода
- •Связь между электродами первого и второго рода
- •Окислительно-восстановительные электроды
- •Электрохимические элементы
- •Химические цепи
- •Химические цепи с двумя электролитами
- •Химические цепи с одним электролитом
- •Концентрационные цепи
- •Концентрационные цепи без переноса ионов
- •Концентрационные цепи c переносом ионов
- •6. Химическая кинетика
- •Основные понятия химической кинетики
- •Скорость химической реакции
- •Закон действующих масс
- •Формальная кинетика
- •Решение кинетических задач методами формальной кинетики
- •Односторонние реакции первого порядка
- •Односторонние реакции второго порядка
- •Односторонние реакции третьего порядка
- •Зависимость скорости реакции от температуры
- •Методы определения энергии активации
- •Теории химической кинетики
- •Теория активных столкновений
- •Теория активированного комплекса
- •7. Катализ Основные понятия. Основные свойства катализатора
- •Гомогенный катализ
- •Гетерогенный катализ
- •8. Дисперсные системы Основные понятия и определения
- •Признаки объектов коллоидной химии
- •Специфические особенности высокодисперсных систем
- •Классификации дисперсных систем
- •1. Классификация по размерам частиц дисперсной фазы
- •2. Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.
- •9. Поверхностные явления Термодинамика поверхностных явлений
- •Поверхностное натяжение Физический смысл поверхностного натяжения
- •Термодинамическое определение поверхностного натяжения
- •Влияние температуры
- •Влияние природы граничащих фаз
- •Смачивание
- •Анализ уравнения Юнга
- •Флотация
- •Особенности искривленной поверхности раздела фаз
- •Капиллярное давление. Течение жидкости в капиллярах
- •Анализ уравнения Жюрена
- •Адсорбция Основные понятия и определения
- •Классификации адсорбции
- •1. Классификация по природе границы раздела
- •2.Классификация по типу взаимодействия адсорбата и адсорбента
- •Основные характеристики адсорбции
- •Основные экспериментальные зависимости адсорбции
- •Адсорбция на границе твердое тело – газ Теория мономолекулярной адсорбции Лэнгмюра Основные положения
- •Расчет констант уравнения Лэнгмюра
- •Адсорбция на границе жидкость – газ Особенность границы раздела жидкой и газообразной фаз
- •Фундаментальное уравнение адсорбции Гиббса
- •Свойства поверхностно-активных (пав) и поверхностно-инактивных (пив) веществ
- •Строение адсорбционного слоя на границе раствор - газ
- •Перечень используемой литературы
- •Содержание
Диаграмма состояния воды
Три кривые разбивают диаграмму (рис.3.4) на поля, каждое из которых отвечает одному агрегатному состоянию воды: лед, жидкая вода и пар. Кривые отвечают равновесию между соответствующими двумя фазами.
Рис.3.4. Диаграмма состояния воды при средних давлениях. |
Кривая ОС характеризует зависимость давления насыщенного пара жидкой воды от температуры и называется кривой испарения; кривая ОВ ─ зависимость температуры замерзания воды от внешнего давления и называется кривой плавления; кривая ОА ─ зави-симость давления насыщенного пара над льдом от температуры и называется кривой возгонки; кривая OD определяет давление насыщенного пара над переохлажденной водой (метастабильное состояние). При внесении в такую во- |
ду нескольких кристалликов льда произойдет быстрое замерзание воды. Эти же кривые характеризуют и обратные равновесные соответствующие процессы: конденсации, кристаллизации и сублимации.
Для однофазной области, обозначенной например, точкой 1, число степеней свободы С = 3 - 1= 2. Это означает, что в известных пределах можно менять температуру и давление и это не вызовет изменения числа и вида фаз системы. В точке 2 число степеней свободы С = 3 - 2= 1. Это указывает на возможность произвольного изменения или температуры или давления. При этом вторая переменная тоже должна изменяться в соответствии уравнением Клапейрона–Клаузиуса.
В точке О в равновесии находятся одновременно три фазы: лед, жидкая вода и пар, число степеней свободы в тройной точке равно С = 3 - 3= 0. Это означает, что все три фазы могут находиться в равновесии только при определенных условиях:
р=6,1·102 Па и Т = 273,1576 К (0,0076°С).
Диаграмма состояния серы
Если твердое вещество может образовывать несколько кристаллических модификаций, то на диаграмме состояния можно различить фазовые переходы, когда одна кристаллическая модификация при изменении внешних условий, например, температуры, переходит в другую кристаллическую модификацию и при восстановлении прежних условий возвращается в первоначальную форму. Примером такого превращения может служить переход ромбической серы в моноклинную и обратно.
Рис.3.5. Диаграмма состояния серы. |
Сера может находиться в четырех модификациях: парообразной, жидкой и двух кристаллических, условия существования которых приведены на диаграмме состояния серы (рис.3.5). На диаграмме имеются четыре области, отвечающие устойчивому существованию четырех фаз серы и четыре тройные точки. В точке А ромбическая сера превращается в моноклинную, в равновесии находится три фазы: сера ромбическая, сера моноклинная |
и сера парообразная, число степеней свободы равно С = 3 - 3= 0.
В точке С моноклинная сера плавится, здесь осуществляется безвариантное равновесие трех фаз серы: жидкой, моноклинной и парообразной. В точке В в равновесии с жидкой серой находятся две ее кристаллические модификации: ромбическая и моноклинная, число степеней свободы равно С = 3 - 3= 0. В точке О сосуществуют перегретая ромбическая сера (кривая ОВ), переохлажденная жидкая сера (кривая ОС), и парообразная сера (кривая АО), давление пара которой выше давления пара, равновесного с моноклинной серой (кривая АС). Такой пар будет пересыщенным относительно пара, равновесного с серой моноклинной. В точке О три неустойчивые фазы образую метастабильную, неустойчивую систему.
Кривая АВ показывает, как изменяется температура превращения ромбической серы в моноклинную с изменением давления. Кривая CВ характеризует изменение температуры плавления моноклинной серы с изменением давления, кривая CВ имеет наклон вправо, то есть с повышением давления температура плавления моноклинной серы увеличивается. Кривые AD, AC и CE характеризуют равновесия: переход ромбической серы в парообразную, моноклинной серы в парообразную и жидкой серы в парообразную. Кривые АО, ОС и ОВ относятся к метастабильным равновесиям. При давлении больше, чем в точке В сера ромбическая при нагревании превращается в жидкую серу, минуя фазу серы моноклинной, которая является устойчивой только в области АВС.
