
- •Раздел 1. Введение в биохимию.
- •Раздел 2. Белки: структура, свойства, функции.
- •Нейтральный.
- •Раздел 3. Ферменты: структура, свойства, регуляция активности.
- •Белков;
- •Углеводов;
- •При аллостерическом ингибировании активности ферментов:
- •Раздел 4. Синтез белка.
- •Аминокислоты;
- •Мононуклеотиды;
- •Рибоза;
- •Раздел 5. Цикл трикарбоновых кислот.
- •Раздел 6. Энергетический обмен.
- •Раздел 7. Биохимия гормонов.
- •Активация цАмф-зависимой протеинкиназы происходит следующими способами:
- •Фосфодиэстераза – это фермент, который:
- •Гормон инсулин:
- •Ионы кальция являются модулятором для кальмодулина, т.К.:
- •Циклические нуклеотиды:
- •Установите соответствие:
- •Основной функцией гормонов является:
- •Все перечисленные утверждения, касающиеся гормонов, справедливы, кроме:
- •Катехоламины:
- •Гормонами белковой и пептидной природы являются:
Белков;
белков-ферментов;
Углеводов;
углеводно-белковых комплексов;
гормонов.
Энергия активации – это:
средняя кинетическая энергия молекул в системе;
минимальное количество энергии, которое нужно сообщить системе, чтобы перевести 1 моль вещества в реакционноспособное состояние;
минимальная энергия реакционноспособных молекул.
При изменении концентрации субстрата активность фермента:
не изменяется;
активность фермента постоянно повышается с увеличением концентрации субстрата;
с увеличением концентрации субстрата активность фермента повышается до определенного предела.
Константа Михаэлиса численно равна:
концентрации субстрата, при которой скорость реакции составляет половину максимальной;
концентрации субстрата, при которой скорость реакции является максимальной;
концентрации субстрата, при которой скорость реакции минимальна;
половине максимальной скорости реакции.
При превращении профермента в фермент происходит:
изменение активного центра;
стабилизация структуры белка;
отщепление части полипептидной цепи, изменение структуры фермента, формирование активного центра;
образование субстрат-энзимного комплекса.
В физиологических условиях не наблюдается:
необратимое ингибирование, вызванное денатурацией фермента;
конкурентное ингибирование;
неконкурентное ингибирование;
ретроингибирование.
Эффект положительной кооперативности олигомерных ферментов - это:
эффект усиления первоначального действия ферментов;
эффект ослабления первоначального действия ферментов;
обратимое ингибирование;
необратимое ингибирование.
Обратимое ингибирование активности фермента возможно:
при врожденном нарушении первичной структуры фермента;
при действии солей тяжелых металлов;
при действии высокой температуры;
при избытке субстрата.
Субстратное ингибирование активности ферментов возникает вследствие:
недостаточной концентрации субстрата;
оптимальной концентрации субстрата;
высокой концентрации субстрата.
При действии ингибитора, обладающего структурным сходством с субстратом, наблюдается следующий вид торможения:
неконкурентное;
конкурентное;
аллостерическое;
неспецифическое.
Необратимые ингибиторы ферментов:
гормоны;
соли тяжелых металлов в высоких концентрациях;
соли щелочно-земельных металлов;
избыток субстрата.
К специфической регуляции активности ферментов относится:
влияние температуры;
влияние рН;
влияние гормонов;
влияние ионной силы.
Механизм действия конкурентных ингибиторов, заключается в том, что ингибитор:
вызывают денатурацию фермента;
изменяют пространственную конформацию активного центра;
блокируют активный центр;
окисляют сульфгидрильные группы фермента.
Часть молекулы фермента, обеспечивающая присоединение к нему отрицательного эффектора, называется:
активный центр;
аллостерический центр;
каталитический участок.
Ингибирование фермента по типу обратной связи называется:
конкурентным ингибированием;
бесконкурентным ингибированием;
ретроингибированием;
смешанным ингибированием.
Изоферменты – это:
ферменты, отличающиеся по физико-химическим свойствам, катализирующие одну и ту же реакцию;
мультимеры, обладающие одинаковыми физико-химическими свойствами;
ферменты, катализирующие разные химические реакции;
ферменты, способные катализировать несколько химических реакций.
Неактивной формой протеолитических ферментов является:
апофермент;
профермент;
кофермент;
изофермент.
Квази-субстрат присоединяется к:
активному центру;
аллостерическому центру;
апоферменту;
коферменту.
Отрицательный эффектор:
влияет на активный центр фермента и ускоряет ход реакции;
вызывает деформацию активного центра фермента и замедляет ход реакции;
вызывает обратимую денатурацию белка-фермента;
вызывает необратимую денатурацию фермента.
Положительный эффектор:
изменяет конформацию активного центра фермента и ускоряет ход реакции;
вызывает деформацию активного центра фермента и замедляет ход реакции;
вызывает обратимую денатурацию фермента.
Механизм действия аллостерических ингибиторов заключается в том, что они:
вызывают денатурацию апофермента;
блокируют активный центр фермента;
нарушают пространственную конфигурацию активного центра фермента.
К модификации фермента не относится:
денатурация апофермента;
ограниченный протеолиз;
присоединение химических группировок;
аллостерический эффект.
Малоновая кислота тормозит активность сукцинатдегидрогеназы в результате:
аллостерического ингибирования;
субстратного ингибирования;
конкурентного ингибирования;
ретроингибирования.
В основе обнаружения ферментов лежит следующее их свойство:
специфичность действия и каталитическая активность;
термолабильность;
зависимость от рН среды;
способность к электрофорезу.
К факторам, влияющим на активность фермента посредством изменения степени ионизации субстрата и активного центра фермента, относятся:
температура;
рН среды;
соли тяжелых металлов;
соли щелочноземельных металлов.
При действии низкой температуры с ферментом происходит:
денатурация;
необратимая инактивация;
обратимая инактивация.
Механизм активации проферментов:
изменение первичной структуры;
изменение третичной структуры;
формирование активного центра;
присоединение металла.
Увеличение активности ферментов при повышении температуры до 45 С связано с:
денатурацией белковой части фермента;
изменением первичной структуры;
обратимым изменением третичной структуры;
снижением энергии активации.
Укажите свойства ферментов, обусловленные их белковой природой:
ускорение как прямой, так и обратной реакции;
термолабильность;
рН зависимость;
не изменяемость в ходе реакции;
изменяют активность под действием активаторов и ингибиторов;
специфичность.
Укажите класс ферментов, представители которого требуют затрат энергии для осуществления катализа:
оксидоредуктазы;
трансферазы;
гидролазы;
лиазы;
изомеразы;
лигазы.
Ферменты, расщепляющие молекулу субстрата на два фрагмента с присоединением молекулы воды по месту разрыва, относятся к классу:
лигазы;
изомеразы;
гидролазы;
лиазы;
трансферазы;
оксидоредуктазы.
Ферменты, перемещающие группу атомов внутри молекулы субстрата, относятся к классу:
трансферазы;
лиазы;
лигазы;
гидролазы;
изомеразы;
оксидоредуктазы.
Ферменты, отщепляющие молекулу воды от субстрата с образованием двойной связи, относятся к классу:
оксидоредуктазы;
трансферазы;
гидролазы;
лиазы;
изомеразы;
лигазы.
Ферменты, транспортирующие электроны, относятся к классу:
трансферазы;
оксидоредуктазы;
гидролазы;
лигазы;
лиазы;
изомеразы.
При конкурентном ингибировании происходит:
необратимое ингибирование;
изменение третичной структуры фермента;
ингибирование продуктами реакции;
обратимое ингибирование;
угнетение активности, зависящее от концентрации ингибитора.
Изоферменты отличаются между собой по:
первичной структуре;
электрофоретической подвижности;
оптимуму рН;
иммунологическим особенностям;
отношению к ингибиторам;
механизму действия.
Биологическое значение витаминов заключается в том, что они:
являются источником энергии;
входят в состав гормонов;
являются структурными компонентами клеток;
входят в состав белков соединительной ткани;
входят в состав ферментов в виде коферментов.
Витамины-кофакторы:
связываются с ферментом только слабыми связями;
связываются с ферментом только ковалентно;
связываются с активным центром фермента всеми типами связей;
связываются с апоферментом;
встраиваются в активный центр фермента.
Функции витаминов:
ингибиторная, транспортная;
кофакторная, косубстратная;
рецепторная, антиоксидантная;
регуляторная, ингибиторная;
регуляторная, структурная.
Основная функция витамина В3(РР или никотинамида):
дегидрирование;
декарбоксилирование;
ацетилирование;
окислительное декарбоксилирование.
Основная функция витамина В6:
перенос ацильных групп;
перенос аминогрупп, декарбоксилирование аминокислот;
перенос карбоксильных групп;
перенос метильных групп.
Основная функция витамина В2:
карбоксилирование субстрата;
декарбоксилирование субстрата;
перенос ацильных групп;
перенос метильных групп;
дегидрирование субстрата.
Основная функция витамина Н (биотина) :
включение карбоксила в молекулу субстрата;
перенос аминогрупп;
перенос метильных групп;
перенос ацильных групп.
Основная функция витамина В1:
участие в процессах дезаминирования;
участие в процессах окисления;
перенос ацильных групп;
участие в процессе окислительного декарбоксилирования кетокислот.
Витамин С принимает участие:
в структуре редокс-цепи митохондрий.
в регуляции водно-солевого обмена.
в реакциях дегидрирования и декарбоксилирования.
в окислительно-восстановительных процессах, гидроксилировании аминокислот и стероидных гормонов.
Витамин В2 является составной частью кофермента:
флавинадениндинуклеотида.
никотинамидадениндинуклеотида.
биотина.
пиридоксальфосфата.
Витамин В3 является кофактором:
ФАД-зависимых дегидрогеназ.
НАД-зависимых дегидрогеназ.
трансаминаз.
декарбоксилаз.
К водорастворимым витаминам относятся:
РР, Н, В6;
А, В, С, Д;
С, Р, К, Е;
В1, В2, В12.
К жирорастворимым витаминам относятся:
А, В, С, Д;
А, Д, Е, К;
РР, Н, В, Вс;
С, Р, К, Е.
Антивитамины – это:
вещества, вызывающие конкурентное торможение химических реакций
это модификаторы витаминов химической природы
вещества, введение которых вызывает гипо– и авитаминоз
это соединения повышающие активность витаминов.
Ферменты – это:
вещества, которые используются в ходе реакции;
вещества, которые в ходе реакции претерпевают изменения, но по ее завершении возвращаются в исходное состояние;
белковые катализаторы;
вещества, которые образуют комплекс с субстратом и разрушаются в ходе реакции;
вещества, ускоряющие химическую реакцию.
Центр регуляции- это:
место связывания фермента с субстратом;
место присоединения эффектора;
место присоединения кофактора;
часть фермента, обеспечивающая химические превращения субстрата.
Химическое превращение субстрата обеспечивается:
аллостерическим центром;
регуляторным центром;
адсорбционным центром;
каталитическим центром.
Функция активного центра:
ориентация субстрата относительно активного центра;
строгая пространственная ориентация фермента и субстрата;
присоединение субстрата;
взаимосвязь с регулятором фермента;
акт катализа.
Какая функциональная группа лизина может входить в активный центр фермента?
Карбоксильная группа.
α-аминогруппа.
ε-аминогруппа.
Углеводородная цепь.
Какая функциональная группа аспарагиновой кислоты может входить в активный центр фермента?
γ-карбоксильная.
α-аминогруппа.
α-карбоксильная.
α-аминогруппа.
В активном центре различают:
контактный участок;
каталитический участок;
регуляторный участок;
апофермент, определяющий специфичность фермента.
Аллостерический центр – это:
место присоединения субстрата;
место присоединения кофактора;
центр регуляции;
участок фермента, обеспечивающий присоединение эффекторов.
Простетическая группа ферментов – это:
прочно связанные с активным центром небелковые компоненты;
кофакторы, легко вступающие в реакцию и не связанные с активным центром фермента;
белковая часть фермента.
Апофермент – это:
белковая часть фермента, не влияющая на ход химических реакций;
небелковая часть фермента;
часть фермента, обеспечивающая связывание “своего” субстрата;
белковая часть фермента.
Коферменты – это:
нуклеотиды, непосредственно участвующие в химической реакции;
прочно связанные с активным центром соединения;
производные витаминов, участвующие в химческой реакции.
Для образования фермент-субстратного комплекса необходимо:
соответствие конфигураций субстрата и активного центра фермента;
комплементарность контактного участка активного центра с кофактором;
соответствие апофермента и кофермента;
изменение конфигурации субстрата относительно активного центра.
Могут ли ферменты катализировать реакции, которые термодинамически невозможны в отсутствие фермента?
не могут;
могут;
могут, если эти реакции экзотермические;
могут, если эти реакции эндотермические.
Скорость ферментативной реакции измеряют:
по количеству исчезающего субстрата в единицу времени;
по изменению количества кофактора фермента;
по количеству фермента в пробе;
по количеству продукта, образовавшемуся под действием фермента в единицу времени.
Выберите особенности строения и функционирования аллостерических ферментов:
являются лимитирующими ферментами метаболических путей;
являются мономерными белками;
имеют пространственно разделенный активный и регуляторный центры;
при взаимодействии с лигандами не проявляют кооперативный эффект;
не проявляют регуляторные свойства при диссоциации молекулы на протомеры.
Для снятия действия неконкурентного ингибитора используют:
увеличесние концентрации субстрата ;
реактиваторы;
SH-содержащие комплексоны;
аналоги субстрата.
Липаза в жировой ткани может находиться в двух формах – в виде простого белка и фосфопротеина. Объясните механизм изменения активности фермента:
аллостерическая регуляция;
кооперативный эффект;
химическая модификация фермента;
ограниченный протеолиз.