
- •1. Пусть а1в2с2 – треугольник, равный треугольнику авс, с вершиной в2 на луче а1в1 и вершиной с2 в той же полуплоскости относительно прямой а1в1, где лежит вершина с1.
- •5. Треугольник а1в1с1 совпадает с треугольником а1в2с2, а значит, равен треугольнику авс.
- •1. Совместим вершину а1 а1в1с1 с вершиной а авс.
- •1. Перечислить основные фигуры. Как они изображаются и обозначаются? Аксиома принадлежности точек и аксиома прямой. Сформулировать, сделать чертеж и символическую запись.
- •2. Определение серединного перпендикуляра. Доказать свойство серединного перпендикуляра.
- •2. Определение угла; биссектрисы угла. Доказать теорему о свойстве биссектрисы угла.
- •1. Определение отрезка, его обозначение. Аксиома расположения точек на прямой (чертеж, символическая запись). Что называется длиной отрезка, его серединой?
- •2. Из трех различных точек прямой одна и только одна лежит между двумя другими.
- •Каждый отрезок имеет положительную длину. Длина отрезка равна сумме длин двух частей, не которые он разбивается любой его точкой.
- •2. Каково бы ни было положительное число, существует отрезок, длина которого равна этому числу.
- •Определение перпендикулярных прямых. Доказать теорему о прямой, перпендикулярной данной и проходящей через точку этой прямой.
- •1) От луча ов в заданную полуплоскость можно отложить согласно аксиоме откладывания углов.
- •2) Докажем, что ор – единственная прямая, перпендикулярная ав.
- •1. Какие отрезки называются равными? Аксиома измерения отрезков (формулировка, чертеж, символическая запись).
- •Каждый отрезок имеет положительную длину. Длина отрезка равна сумме длин двух частей, не которые он разбивается любой его точкой.
- •2. Каково бы ни было положительное число, существует отрезок, длина которого равна этому числу.
- •2. Определение равнобедренного, равностороннего треугольника. Доказать свойство углов равнобедренного, равностороннего треугольников.
- •1. Дополнительное построение. Проведем отрезок bd – биссектрису авс.
- •1. Определение полуплоскости. Аксиома разбиения плоскости и свойства разбиения (сформулировать, сделать чертеж и символическую запись).
- •2. Определение медианы. Доказать свойство медианы равнобедренного треугольника, проведенной к его основанию. Сформулировать обратные теоремы.
- •1. Определение, изображение, обозначение луча (полупрямой). Какие полупрямые называются дополнительными? Аксиома откладывания отрезков (формулировка, чертеж, символическая запись).
- •2. Определение хорды, диаметра круга. Доказать теорему о диаметре, перпендикулярном хорде. Сформулировать обратную теорему.
- •1. Определение и обозначение угла. Виды углов и их определение (сделать чертежи). Доказать свойство биссектрис вертикальных углов.
- •1) А, где а – точка, являющаяся вершиной угла;
- •2) Вас, где а – точка, являющаяся вершиной угла, в и с – точки, взятые на разных сторонах угла (ав и ас – лучи, образующие угол);
- •3) (Ab), где a, b – лучи, образующие угол.
- •5. Oa и od – дополнительные полупрямые ok и on – дополнительные полупрямые n ko.
- •2. Определение вневписанной окружности. Доказать теорему о центре вневписанной окружности.
- •2. Точка о пересечения внешних биссектрис равноудалена от прямых, содержащих стороны ab и bc. Поэтому через нее проходит биссектриса внутреннего угла a.
- •1. По свойству касательных осq, obp. Проведем луч из точки а через центр окружности. 2. Рассмотрим образовавшиеся треугольники аос и аов.
- •1. Определение равных углов, биссектрисы угла. Аксиома откладывания углов (формулировка, чертеж, символическая запись).
- •1. Пусть серединные перпендикуляры kk1 и nn1 пересекаются в точке о. Соединим точку о с вершинами треугольника авс.
- •2. Определение окружности, вписанной в треугольник. Доказать теорему о центре вписанной окружности. В данный треугольник вписать окружность.
- •1. Пусть биссектрисы аа1 и вв1 пересекаются в точке о. Построим из точки о перпендикуляры ok, on и op к сторонам ав, вс и ас треугольника.
- •2. Алгоритм решения задач на построение. Построить треугольник по трем сторонам. Построить биссектрису угла.
- •4. Рассмотрим полученные углы.
- •2. Что значит решить задачу на построение? Построить угол, равный данному. Построить середину отрезка.
- •1 . Если прямая пересекает одну из двух параллельных прямых, то она пересекает и другую.
- •2. Если две прямые параллельны третьей прямой, то они параллельны между собой.
- •1. Определение высоты, медианы, биссектрисы треугольника. Замечательные точки треугольника (сделать чертеж и дать им определение).
- •2. Определение смежных и вертикальных углов. Доказать свойства и следствия.
- •1) Аос и вос – смежные;
- •2) Аоd и аос – смежные;
- •1. Определение равных треугольников. Сформулировать признаки равенства треугольников. Доказать второй признак.
- •1. Дополнительное построение. Проведем отрезок bd – биссектрису авс.
- •2. Доказать теорему о свойствах углов, образованных при пересечении двух параллельных прямых секущей.
- •2. Определение внешнего угла треугольника. Доказать свойства внешнего угла треугольника.
- •1. Определение окружности и ее элементов (центр, радиус, хорда, диаметр, дуга). Формула длины окружности; длины дуги. Определение центрального угла, его градусная мера.
- •2. Доказать свойство катета, лежащего против угла в 30°.
- •1. Определение круга, сектора. Формула площади круга и сектора. Сегменты.
- •2. Теорема о соотношении между сторонами и углами треугольника (прямая и обратная).
- •1. Взаимное расположение окружности и прямой (рассмотреть все случаи, сделать чертежи и символическую запись).
- •1. Взаимное расположение двух окружностей (рассмотреть все случаи, сделать чертежи); расстояние между центрами окружностей.
- •1. Окружности не имеют общих точек. Проведем отрезок, соединяющий центры окружностей (о1о2) – линию центров.
- •3. Окружности имеют одну общую точку (окружности касаются).
- •2. Доказать неравенство треугольника.
- •1. Дополнительное построение:
- •2. Рассмотрим вcd:
- •1. Определение параллельных прямых. Сформулировать и доказать признаки параллельности прямых.
- •2. Доказать теоремы о величине угла между хордами и секущими.
- •1) Окружность – это геометрическое место точек, равноудаленных от данной точки.
- •2) Биссектриса угла – это геометрическое место точек, равноудаленных от сторон угла.
- •3) Серединный перпендикуляр к отрезку – это геометрическое место точек, равноудаленных от концов отрезка.
- •2. Рассмотрим треугольники aов и eod.
- •1. Определение биссектрисы угла, определение смежных углов. Доказать теорему о биссектрисах смежных углов.
- •2. Доказать теорему о сумме внутренних углов выпуклого многоугольника.
- •2. Доказать теоремы об углах с соответственно параллельными сторонами и соответственно перпендикулярными сторонами.
- •1. Какой четырехугольник называется описанным около окружности? Доказать теорему о свойстве сторон описанного четырехугольника.
- •1) Точка c находится вне окружности,
- •2) Она лежит внутри окружности. При первом предположении и усло-
- •2. Доказать теорему о биссектрисах вертикальных углов.
- •5. Oa и od – дополнительные полупрямые ok и on – дополнительные полупрямые n ko.
- •1. Какой четырехугольник называется вписанным в окружность? Доказать теорему о свойстве углов вписанного четырехугольника.
- •1) Cd не пересекает окружность,
- •2) Cd пересекает окружность.
- •2. Что называется расстоянием между параллельными прямыми? Доказать, что расстояния от любых двух точек прямой до параллельной ей прямой равны.
1. По свойству касательных осq, obp. Проведем луч из точки а через центр окружности. 2. Рассмотрим образовавшиеся треугольники аос и аов.
прямоугольные по гипотенузе и катету.
3.
Из
4.
Из
Билет № 10.
1. Определение равных углов, биссектрисы угла. Аксиома откладывания углов (формулировка, чертеж, символическая запись).
Угол – это геометрическая фигура, которая состоит из точки и двух лучей, исходящих из этой точки. Лучи называются сторонами угла, а общее начало лучей – вершиной угла. Угол разделяет плоскость на две части. Одна из частей называется внутренней областью угла, а другая – внешней областью угла. Фигуру, состоящую из угла и его внутренней области, также называют углом.
Определение 1. Две геометрические фигуры называются равными, если их можно совместить наложением.
Пусть имеются два угла АОВ и МРС. Совместим вершины углов: точки О и Р. Направим луч РС вдоль луча ОВ. Если при этом луч РМ накладывается на луч ОА, то АОВ = МРС.
Определение 2. Две угла называются равными, если они имеют одинаковую градусную меру.
Аксиома откладывания углов:
От любой полупрямой в заданную полуплоскость можно отложить угол с заданной градусной мерой, меньшей 180°, и притом только один.
На прямой n выберем точку N. От луча NB откладываем угол с вершиной в точке N и строим луч NA.
Аксиома взаимного расположения лучей на плоскости.
Из трех различных лучей, лежащих в одной полуплоскости и имеющих общее начало, один и только один луч лежит между двумя другими.
Чтобы сравнить два угла, нужно наложить один угол на другой так, чтобы сторона одного угла совместилась со стороной другого, а две другие оказались по одну сторону от совместившихся сторон. Если две другие стороны также совместятся, то углы равны. Если же эти стороны не совместятся, то меньшим считается тот угол, который составляет часть другого. У меньшего угла градусная мера меньше. COB < AOB.
Неразвернутый угол составляет часть развернутого, поэтому развернутый угол больше неразвернутого угла. Любые два развернутых угла равны.
Определение 3. Луч, исходящий из вершины угла и делящий его на два равных угла, называется биссектрисой угла.
OC – биссектриса. COB = AOС = AOB.
2. Определение окружности, описанной около треугольника. Доказать теорему о центре описанной окружности. Описать окружность около остроугольного, прямоугольного и тупоугольного треугольника.
Определение 1. Треугольник называется вписанным в окружность, а окружность – описанной около треугольника, если все вершины треугольника лежат на окружности.
Теорема 1. Серединные перпендикуляры к сторонам треугольника пересекаются в одной точке.
Д
ано:
АВС; KK1,
NN1,
PP1
-
серединные перпендикуляры.
Доказать: KK1 ∩ NN1 = {O};
KK1 ∩ PP1 = {O}.
Доказательство: