Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Функциональный анализ.Часть 2.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
2.81 Mб
Скачать

1.2. Примеры линейных пространств

Рассмотрим примеры линейных пространств. Проверка аксиом не вызывает затруднений, поэтому проверку аксиом не проводим.

1. Совокупность действительных чисел , с обычными операциями сложения и

умножения, представляет собой линейное пространство.

2. Множество всевозможных упорядоченных наборов вещественных чисел , где сложение и умножение на число определяется по формулам

,

также является линейным пространством. Оно называется - мерным арифметическим пространством и обозначается .

3. Непрерывные функции на отрезке с обычными операциями сложения и умножения на число образует линейное пространство.

4. Последовательность чисел , удовлетворяющая условию

(1.5)

с операциями

,

образует линейное пространство .

Если две последовательности удовлетворяют неравенству (1.5), то, согласно неравенству, , сумма двух последовательностей также будет удовлетворять неравенству (5).

5. Совокупность всех ограниченных последовательностей, с теми же операциями сложения и умножения на число, что и в примере 4, также является линейным пространством.

Примеры других линейных пространств приводятся далее, по мере того, как появится в них необходимость.

1.3. Размерность. Базис конечномерного пространства

Определение 2. Элементы линейного пространства называются линейно зависимыми, если найдутся числа , не все равные нулю и такие, что

. (1.6)

Определение 3. Элементы линейного пространства называются

линейно независимыми, если из равенства (1.6) вытекает, что .

Свойство линейной зависимости характеризуется предложением.

Предложение 5. Элементы линейно зависимы тогда и только тогда, когда один из этих элементов может быть представлен в виде линейной комбинации остальных.

Доказательство. Пусть элементы линейно зависимы, тогда выполнено (1.6) . Причем найдется такой номер , что . Поделив (1.6) на , получим

,

откуда, выражая элемент , получим требуемое представление

.

Верно обратное утверждение. Пусть элемент является линейной комбинацией остальных, т.е. имеется представление

.

Отсюда имеем

.

Таким образом, получили соотношение, вида (1.6), с коэффициентом перед отличным от нуля. Поэтому элементы - линейно зависимы. Предложение доказано.

Определение 4. Если в пространстве можно найти линейно независимых

элементов, а любые элементов линейно зависимы, то говорят, что пространство имеет размерность .

Определение 5. Линейное пространство , в котором можно указать сколь

угодно большое число линейно независимых элементов, называется бесконечномерным.

Определение 6. Система линейно независимых элементов линейного пространство называется базисом пространства , если для всякого вектора существует разложение

. (1.7)

Заметим, что коэффициенты разложения (1.7) определяются однозначно. В самом деле, пусть имеется два разложения

,

.

Вычитая из одного разложения другое, получим равенство

,

из которого в силу линейной независимости элементов следует, что

.

Однозначно определяемые числа называются координатами вектора в базисе . Далее имеет место теорема.

Теорема 1. В пространстве любая совокупность из линейно независимых элементов пространства является базисом этого пространства.

Доказательство. Пусть - система из линейно независимых элементов. Возьмем произвольный элемент и рассмотрим совокупность из элементов . Она линейно зависима, поскольку число элементов равно . Поэтому существует соотношение вида

. (1.8)

Число . В противном случае получили бы соотношение, вида (1.6), в котором не все числа равны нулю. А это противоречит условию линейной независимости элементов . Следовательно . Далее из (1.8) имеем

,

т.е. получим необходимое разложение. Теорема доказана.

Следующая теорема является обратной по отношению к теореме 1.

Теорема 2. Если в пространстве имеется базис, то размерность этого пространства равна числу базисных элементов.

Доказательство. Пусть элементы образуют базис пространства . По определению базиса они линейно независимы. Покажем, что любые элементов пространства линейно зависимы. Рассмотрим элементов и разложим по базису

,

,

……………………………….

.

Далее, записывая в отдельный столбец координаты этих векторов, составим матрицу с строками и столбцами

Ранг матрицы не превосходит и, как доказывается в линейной алгебре [1,2], один столбец является линейной комбинацией остальных столбцов. В соответствие с этим, один вектор является линейной комбинацией остальных и, согласно предложению 5, элементы линейно зависимы. Теорема доказана.