
- •1 Билет. Понятие множества , элемента множества.
- •2 Билет. Конечные и бесконечные множества.
- •3 Билет. Свойства операций объединения и пересечения множеств.
- •4 Билет. Прямое произведение множеств.
- •5 Билет. Бинарные отношения.
- •6. Функция как закон соответствия между множествами
- •7. Класс элементарных функций
- •8. Суперпозиция функций.
- •9. Последовательность - функция натурального аргумента.
- •10. Бесконечно малые последовательности
- •11 Билет. «»
- •12 Билет. «»
- •18 Вопрос
- •19 Вопрос
- •21 Билет. Теоремы об арифметических свойствах пределов последовательности:
- •22.Признаки существования предела последовательности.
- •23. Замечательный предел типа «е».
- •24. Предел функции в точке.
- •25. Определение предела функции на языке языке «ε» — «δ».
- •31. Теоремы об арифметических свойствах пределов.
- •32. Сравнение бесконечно малых функций
- •33.«Замечательный» предел - предел отношения синуса бесконечно малого угла к этому углу.
- •34. Определение непрерывности функции в точке.
- •41 Определение производной.
- •42 Приращение функции и вычисление средней скорости изменения функции.
- •43 Геометрический смысл производной.
- •44 Связь между непрерывностью и существованием производной.
- •45) Правила вычисления производной от суммы, произведения и частного функций.
- •46 Производная сложной функции
- •48 Бином Ньютона. Формула Ньютона-Лейбница.
- •49 Теорема Лагранжа о конечном приращении функции на отрезке.
- •50 Правило Лопиталя раскрытия неопределенностей.
- •51.Понятие о дифференциале функции.
- •52.Геометрический смысл дифференциала функции.
- •53.Связь дифференциала и производной функции.
- •54.Свойства дифференциала.
- •55.Таблица дифференциалов.
- •60 Метод интегрирования «по частям» для вычисления неопределенного интеграла.
- •61 Интегралы, не выражающиеся через элементарные функции.
- •62 Задача нахождения площади криволинейной трапеции.
- •63 Определенный интеграл как предел интегральных сумм.
- •64 Производная определенного интеграла по верхнему пределу.
- •64.Теорема о производной определенного интеграла по переменному верхнему пределу
- •69. Определение несобственных интегралов с бесконечными пределами.
- •70. Несобственные интегралы от разрывных функций.
- •71. Интеграл вероятностей (Пуассона).
51.Понятие о дифференциале функции.
Рассмотрим функцию y = f(x), дифференцируемую в данной точке x. Приращение D y ее представимо в виде
D y = f'(x)D x +a (D x) D x,
где первое слагаемое линейно относительно D x, а второе является в точке D x = 0 бесконечно малой функцией более высокого порядка, чем D x. Если f'(x)№ 0, то первое слагаемое представляет собой главную часть приращения D y. Эта главная часть приращения является линейной функцией аргумента D x и называется дифференциалом функции y = f(x). Если f'(x) = 0, то дифференциал функции по определению считается равным нулю.
Определение 5 (дифференциал). Дифференциалом функции y = f(x) называется главная линейная относительно D x часть приращения D y, равная произведению производной на приращение независимой переменной
dy = f'(x)D x.
Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = D x. Поэтому формулу для дифференциала принято записывать в следующем виде: dy = f'(x)dx.
ИЛИ
Пусть функция у=ƒ(х) имеет в точке х отличную от нуля производную.
Тогда, по теореме о связи функции, ее предела и бесконечно малой функции, можно записать D у/D х=ƒ'(х)+α, где α→0 при ∆х→0, или ∆у=ƒ'(х)•∆х+α•∆х.
Таким
образом, приращение функции ∆у
представляет собой сумму двух слагаемых
ƒ'(х)•∆х и а•∆х, являющихся бесконечно
малыми при ∆x→0. При этом первое слагаемое
есть бесконечно малая функция одного
порядка с ∆х, так как
а второе слагаемое есть бесконечно
малая функция более высокого порядка,
чем ∆х:
Поэтому первое слагаемое ƒ'(х)· ∆х называют главной частью приращения функции ∆у.
Дифференциалом функции у=ƒ(х) в точке х называется главная часть ее приращения, равная произведению производной функции на приращение аргумента, и обозначается dу (или dƒ(х)):
dy=ƒ'(х)•∆х. (24.1)
Дифференциал dу называют также дифференциалом первого порядка. Найдем дифференциал независимой переменной х, т. е. дифференциал функции у=х.
Так как у'=х'=1, то, согласно формуле (24.1), имеем dy=dx=∆x, т. е. дифференциал независимой переменной равен приращению этой переменной: dх=∆х.
Поэтому формулу (24.1) можно записать так:
dy=ƒ'(х)dх, (24.2)
иными словами, дифференциал функции равен произведению производной этой функции на дифференциал независимой переменной.
Из формулы (24.2) следует равенство dy/dx=ƒ'(х). Теперь обозначение
производной dy/dx можно рассматривать как отношение дифференциалов dy и dх.
<< Пример 24.1
Найти дифференциал функции ƒ(х)=3x2-sin(l+2x).
Решение: По формуле dy=ƒ'(х) dx находим
dy=(3х2-sin(l+2x))'dx=(6х-2cos(l+2х))dx.
<< Пример 24.2
Найти
дифференциал функции
Вычислить dy при х=0, dx=0,1.
Решение:
Подставив
х=0 и dx=0.1, получим
52.Геометрический смысл дифференциала функции.
Рассмотрим функцию y=f(x) и соответствующую ей кривую. Возьмем на кривой произвольную точку M(x; y), проведем касательную к кривой в этой точке и обозначим через α угол, который касательная образует с положительным направлением оси Ox. Дадим независимой переменной x приращение Δx, тогда функция получит приращение Δy = NM1. Значениям x+Δx и y+Δy на кривой y = f(x) будет соответствовать точка
M1(x+Δx; y+Δy).
Из ΔMNT находим NT=MN·tg α. Т.к. tg α = f '(x), а MN = Δx, то NT = f '(x)·Δx. Но по определению дифференциала dy=f '(x)·Δx, поэтому dy = NT.
Таким образом, дифференциал функции f(x), соответствующей данным значениям x и Δx, равен приращению ординаты касательной к кривой y=f(x) в данной точке х.