Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АНАЛИЗ_РИСКА_ТЕХНОГЕННЫХ_СИСТЕМ_монография.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
2.37 Mб
Скачать

2.13.4. Логические деревья отказов радиоизотопных устройств и вычисление величины риска радиационных аварий

Примеры схем «логических деревьев» аварий показаны на рис.2.53 29. «Логическое дерево» должно составляться для каждой конкретной аварии:

В «логическом дереве» аварий, имевших место на установках с подвижным облучателем (Оценка…, 1978) элементы установки, которые могут привести к авариям обозначены: ω1 – система блокировки и сигнализации по дозе, ω2 – система блокировки и сигнализации по положению облучателя, ω3– устройство перемещения облучателя. В соответствии с правилами математической логики "логическое дерево" состояний может быть записано в виде:

y1, ω2, ω3) = ω1 ( ω ω3 ) (2.13.1)

Условие возникновения аварии записывается в виде:

y(ω1,ω2,ω3) = 1 (2.13.2)

Нас интересует вероятность возникновения аварии, т.е.

P{y(ω1,ω2,ω3) = 1)} = P{ωi = 1} (2.13.3)

Для ремонтируемых элементов любой установки вероятность аварии связывают с коэффициентом готовности

P{ωi=1} = 1 – kг(t) = q(t) (2.13.4)

где kг(t) – коэффициент готовности установки в момент t , q(t) – коэффициент неготовности установки (дополнение до 1 коэффициента готовности).

Для применения к уравнению (2.13.1) формулы вероятности независимых событий, его необходимо записать в совершенной дезъюктивной нормальной форме для чего можно использовать теорему разложения алгебры логики. В соответствии, с этой теоремой уравнение (2.13.1) можно переписать в виде:

y1, ω2, ω3) = (ω1, 2,ω3) (ω1,ω2, 3) ( 1,ω2,ω3) (2.13.5)

Учитывая, что P( Пi) = уравнение (2.13.5)представим в виде:

P{ y1, ω2, ω3) = 1} = P( Пi) = q1(t)·[1 – q2(t)] +

+ q1(t)·q2(t)·[1 – q3(t)] + q1(t)·q2(t)·q3(t)

откуда после преобразований получено:

P{ y1, ω2, ω3) = 1} = (1 – kг1)·(1 – kг2· kг3), (2.13.6)

где kг1, kг2 и kг3 – коэффициенты готовности системы блокировки и сигнализации по дозе, по положению излучателя и устройства перемещения излучателя, соответственно.

В работе (Малютин С.В., 1980) приняты значения kг1= 0,98, kг2 = 0,99 и kг3 = 0,99. В соответствии, с (2.13.6) при указанных значениях коэффициентов получено, что вероятность возникновения радиационной аварии на установках с подвижным облучателем составляет 3·10-4 на установку в год. Погрешность этой оценки определена в 30%.

Рис.2.53. «Логическое дерево» радиационных аварий на мощных гамма-установках с подвижными облучателями: О – техническая причина аварии, ٱ – нарушение персоналом правил и инструкций; 1 – отказ системы перемещения источника излучения, когда источник не переводится в положение хранения или застревает в каналах установки; 2 – отказ системы блокировки двери рабочей камеры по дозе; 3 – отказ системы блокировки по положению источников; 4 – отказ сигнализации о положении источников; 5 – отключение блокировки при входе в рабочую камеру; 6 – работа с неисправной блокировкой;

7 – вход в рабочую камеру без дозиметриста; 8 – внезапное отключение энергоснабжения; 9 – отказ аварийной системы перевода облучателя в положение хранения; 10 – отказ вентиляторов; 11 – отказ сигнализации о работе вентиляторов; 12 – отказ системы блокировки по запретному периоду времени; 13 – вход в камеру до истечения запретного времени; 14 – нарушение целостности радиационной защиты установки; 15 – отказ дозиметрического прибора о превышении уровня радиации в помещениях для персонала; 16 – нерегулярное проведение контроля за целостностью защиты; 17 – разгерметизация источника; 18 – использование в установке источников с повышенным уровнем поверхностного загрязнения

В работе (Хакс В., 1981) приведены результаты анализа радиационных аварий и инцидентов, опубликованных в работах (Малютин С.В., Чистов Е.Д., 1977; Ларичев А.В., Чистов Е.Д., 1981; Чистов Е.Д., Спрыгаев И.Ф. и др., 1970) за период с 1959 года. В табл. 2.22 приведены результаты по анализу причин.

В указанных работах отмечается, что вклад в аварийные ситуации за счет нарушения правил и инструкций составляет 13%. В работе (Малютин С.В., 1980) отмечается, что до 1970 года за счет разгерметизации источников происходило около 32% аварий. С 1970 года благодаря улучшению конструкции источников и повышению их надежности таких аварий практически не стало.

Таблица 2.22

Причины возникновения аварий

Причины

Вклад, %

Вклад, %

Конструктивные и строительные дефекты

Отказ устройств перемещения источников

Отказ систем блокировки и сигнализации

Нарушение правил и инструкций по РБ

Другие нарушения

51

20

9

13

7

27

52

14

7

Всего:

100

100

Рассмотренная методика оценки радиационной безопасности установок с мощными источниками излучения, как на основе анализа «логических деревьев», так и на основе экспериментальных данных о радиационных авариях и инцидентах может быть применена также и для оценки радиационной безопасности РИУ с источниками средней и малой мощности.

К числу таких устройств относится гамма-высотомер (Касьяненко А.А. и др., 1970). Последний состоит из излучателя и приемного устройства (рис. 2.51б) Излучатель представляет собой защитно-коллимирующее корпус (ЗКК). Капсула радиоактивного изотопа 137Сs активностью от 200 до 500 мг·экв·Ra помещается в специальный узел – пробку, в которой надежно закрепляется. Пробка вставляется в ЗКК. В не рабочем состоянии пробка с источником хранится в контейнере. При выполнении регламентных работ используется переносный контейнер, который при транспортировке и стационарном хранении помещается в транспортный контейнер. Пробка с источником устанавливается в защитно-коллимирующий корпус только на время выполнения штатной работы.

Рис. 2.54. «Логическое дерево» возможных путей возникновения радиационных аварий гамма-лучевого высотомера: О - техническая причина аварии, □ - нарушение персоналом правил и инструкций; а – для внешнего облучения, б – для радиационного загрязнения; 1 – нарушение инструкций по радиационной безопасности; 2 – отказ дозиметрического прибора; 3 – застревание пробки с источником при установке загрузке или извлечении выгрузке в/из ЗКК; 4 – разрушение ЗКК, т.е. нарушение целостности радиационной защиты; 5 – нарушение защитного покрытия ЗКК; 6 – превышение времени выполнения операций по установке-извлечению пробки; 7 – нарушение целостности переносного или транспортного контейнера; 8 – утеря источника или ЗКК; 9 – отказ системы сигнализации об интенсивности излучения в зоне проведения работ; 10 – разгерметизация источника; 11 – использование в РИУ источников или ЗКК с повышенным уровнем поверхностного радиоактивного загрязнения

Все источники перед помещением их в пробку проходят контроль на отсутствие поверхностного загрязнения. Конструкция пробки и ЗКК исключает разрушение или нарушение целостности источника.

Анализ результатов эксплуатации указанного типа высотомеров за период с 1968 года по настоящее время, около 1000 экз., показал, что радиационных аварий и инцидентов, связанных с разгерметизацией источников, нарушением целостности защиты, конструктивных недостатков зарегистрировано не было.

За все время эксплуатации приборов имел место инцидент, связанный с застреванием пробки при установке её в ЗКК за счёт перекоса допущенного оператором. После внесения незначительной конструктивной доработки такие случаи были исключены.

На рис. 2.54 приведено «логическое дерево» по определению возможных путей радиационных аварий гамма-высотомера. Если учесть инцидент с застреванием пробки, то с учетом времени на его ликвидацию, определенный по формулам (2.12.67 – 2.12.69) коэффициент готовности излучателя kг1= 0,9999, коэффициент готовности системы сигнализации kг2 =0,99, а вероятность радиационной аварии в соответствии с формулой (2.12.5) будет P = 1*10-4.

Столь высокая степень безопасности объясняется простотой и надежностью конструкции излучателя. Практически радиационная авария возможна только при разрушении ЗКК или пробки. Вместе с тем, если пробка с источником находится вне ЗКК или контейнера, излучение находящегося в ней источника может привести к аварийному облучению персонала. Поэтому нарушение инструкций по РБ является одной из наиболее вероятных причин внешнего облучения. Для предотвращения случаев нарушения инструкций по РБ и порядка проведения регламентных работ обязательным является своевременное обучение персонала, индивидуальный дозиметрический контроль и дозиметрическая сигнализация об уровне излучения в зоне проведения работ с источниками.