
- •Глава 1. Безопасность и риск 6
- •Глава 1. Безопасность и риск Введение
- •1.1. Основные определения и понятия в оценке экологического риска
- •1.2. Классификация рисков
- •1.3. Уровни риска, обусловленные разными опасностями
- •1.4. Уровни индивидуального риска
- •1.5. Профессиональный риск
- •1.6. Оценка риска с учётом ущерба
- •1.7. Концепция и критерии приемлемости риска
- •1.7.1. Экономические факторы приемлемости риска
- •1.7.2. Социальные факторы
- •1.7.3. Психологические факторы
- •1.8. Количественные оценки рисков
- •Глава 2. Оценка опасностей и риска аварий техногенных систем Введение
- •2.1. Опасность и источники опасности в сфере природопользования и экологии
- •2.2. Техногенные аварии и катастрофы
- •2.3. Медленные техногенные воздействия
- •2.4. Источники экологической опасности
- •2.5. Технические и техногенные системы
- •2.6. Факторы техногенной опасности и анализ опасностей
- •2.6.1. Факторы техногенной опасности
- •2.6.2. Предварительный анализ опасностей (Стадия I) (Хенли э.Дж., Кумамото х., 1984)
- •2.6.3. Выявление последовательности опасных ситуаций (Стадия II) (Хенли э.Дж, Кумамото х., 1984)
- •2.6.4. Анализ последствий (Стадия III) (Хенли э.Дж., Кумамото х., 1984)
- •2.7. Построение дерева отказов
- •2.8. Основные символы, используемые при построении дерева отказов
- •2.8.1. Символы событий
- •2.8.2. Логические символы
- •2.8.3. Понятия, используемые при описании метода дерева отказов
- •2.9. Общая методология построения дерева отказов
- •2.10. Построение дерева отказов при помощи таблиц решений
- •2.11. Логический анализ деревьев отказов
- •2.11.1. Аппарат логического анализа
- •2.11.2. Преобразование логических выражений методом карт
- •2.11.3. Упрощение выражений с помощью карт
- •2.12.2. Теоремы сложения вероятностей
- •2.12.3. Теорема умножения вероятностей
- •2.12.4. Формула полной вероятности
- •2.12.5. Теорема Бейеса
- •2.12.6. Надёжность
- •2.12.7. Человеческий фактор в надёжности техногенных систем
- •2.12.7.1. Психофизиологические характеристики человека
- •2.12.7.2. Влияние факторов внешней среды и условий труда на состояние человека
- •2.12.7.3. Показатели надёжности оператора
- •2.12.8. Определение коэффициентов готовности
- •2.12.9. Количественный анализ затраты/выгода с использованием деревьев отказов
- •2.13. Техногенные аварии, возникающие при работе с радиоизотопными устройствами
- •2.13.1. Радиоизотопные устройства
- •2.13.2. Опасные и вредные производственные факторы при работе с радиоизотопными устройствами
- •2.13.3. Методы анализа причин и последствий радиационных аварий
- •2.13.4. Логические деревья отказов радиоизотопных устройств и вычисление величины риска радиационных аварий
- •Контрольные вопросы и задачи
- •Литература
- •Термины и определения
2.13. Техногенные аварии, возникающие при работе с радиоизотопными устройствами
2.13.1. Радиоизотопные устройства
Радиоизотопные устройства (РИУ) широко используются в самых различных отраслях промышленности: металлургии, прокатном производстве, горно-добывающей промышленности и др.; в науке; медицине; космических аппаратах; авиации. Трудно даже перечислить области, в которых находят применение радиоизотопные приборы и устройства. Основное назначение таких устройств – измерение или контроль различных параметров, таких как плотность различных материалов и сред; толщины проката, толщины защитных покрытий, толщины бумаги в процессе их производства; малых расстояний при посадке спускаемых космических аппаратов с целью включения двигателей мягкой посадки и многих, многих других физических величин. Другим примером применения излучений радиоактивных источников является стерилизация сельскохозяйственной продукции с целью увеличения сроков хранения, стерилизация медицинских материалов и инструментария. Применение таких устройств во многих случаях позволяет решить технические и научные задачи, которые не возможно решить, используя любые другие методы.
Остановимся на основных понятиях, терминах и определениях, относящихся к данному классу устройств.
Авария радиационная проектная – авария, для которой проектом определены исходные и конечные состояния радиационной обстановки и предусмотрены системы безопасности (НРБ-99).
Загрузка, разгрузка, установка – установка в РИУ или извлечение источника из него.
Ионизирующее излучение – излучение, которое создается при радиоактивном распаде, ядерных превращениях, торможении заряженных частиц в веществе и образует при взаимодействии со средой ионы разных знаков (О радиационной безопасности…, 1996).
Источник радионуклидный закрытый – источник излучения, устройство которого исключает поступление содержащихся в нем радионуклидов в окружающую среду в условиях применения и износа, на которые он рассчитан (НРБ-99).
Контроль радиационный – получение информации о радиационной обстановке в организации, в окружающей среде и об уровнях облучения людей (включает в себя дозиметрический и радиометрический контроль) (НРБ-99)..
Место рабочее – место постоянного или временного пребывания персонала для выполнения производственных функций в условиях воздействия ионизирующего излучения в течение более половины рабочего времени или двух часов непрерывно (НРБ-99).
Облучение – воздействие на человека ионизирующего излучения (НРБ-99).
Облучение аварийное – облучение в результате радиационной аварии (НРБ-99).
Персонал – лица, работающие с техногенными источниками излучения (группа А) или находящиеся по условиям работы в сфере их воздействия (группа Б) (НРБ-99).
Работа с источником ионизирующего излучения – все виды обращения с источником излучения на рабочем месте, включая радиационный контроль (НРБ-99).
Работник – физическое лицо, которое постоянно или временно работает непосредственно с источниками ионизирующих излучений (О радиационной безопасности…, 1996).
Радиационная авария – потеря управления источником ионизирующего излучения, вызванная неисправностью оборудования, неправильными действиями работников (персонала), стихийными бедствиями или иными причинами, которые могли привести или привели к облучению людей выше установленных норм или к радиоактивному загрязнению окружающей среды (О радиационной безопасности…, 1996).
Радиационное аппаратостроение – производство приборов и устройств с радиоактивными изотопами, в отечественной практике также используется термин аналитическое приборостроение.
Радиоизотопный измерительный прибор (РИП) – прибор, построенных на основе на использовании гамма, бета, альфа или нейтронного излучения радиационных источников. РИП является синонимом понятия РИУ.
Радиационные источники – не относящиеся к ядерным установкам комплексы, установки, аппараты, оборудование и изделия, в которых содержатся радиоактивные вещества или генерируется ионизирующее излучение (Об использовании атомной…, 1995).
Радиоизотопная установка, радиоизотопное устройство (РИУ) – установки или устройства, основанные на использовании гамма, бета, альфа или нейтронного излучения радионуклидных источников.
Риск радиационный – вероятность возникновения у человека или его потомства какого-либо вредного эффекта в результате облучения (НРБ-99).
Система дозиметрического контроля, блокировки и сигнализации (система ДКБС) – системы информирующие о радиационном режиме работы ридиоизотопных устройств, радиационной обстановке и препятствующие доступу персонала в радиационно-опасную зону.
Специальные работы с РИУ или РИП – радиационно-опасные работы, связанные с проведением загрузки или смены радиоактивных источников, ремонтных и испытательных работ.
Средство индивидуальной защиты – средство защиты персонала от внешнего облучения, поступления радиоактивных веществ внутрь организма и радиоактивного загрязнения кожных покровов (НРБ-99).
Транспортных контейнер – устройство, предназначенное для защиты от излучения во время транспортировки радиоактивных источников.
Хранилище радионуклидных источников – специальное помещение или устройство для хранения радиоактивных источников, находящихся во вне рабочем состоянии.
Другие термины, относящиеся к данному типу устройств можно найти в приложении «Термины и определения».
Радиоизотопное устройство состоит из радиоактивного излучателя И, детектора Д излучения и измерительного устройства ИУ. При проектировании РИУ может быть использован эффект поглощения или эффект рассеяния (отражения) излучения (рис. 2.51).
|
|
Рис. 2.51. Схемы радиационных преобразователей прямого измерения излучения: а – на эффекте поглощения излучения, б – на эффекте отражения: И – излучатель, Д – детектор, ИУ – измерительное устройство, КО – контролируемый объект
Радиоактивный излучатель состоит из защитно-коллимирующего корпуса (ЗКК) и радиационного источника излучения, помещенного в этот корпус. Эффект отражения (рис. 2.51б) использован, например, при построении гамма-лучевого высотомера, системы поддержания заданного уровня жидкости с радиоизотопным преобразователем, системы управления уровнем сыпучего материала и др. (Касьяненко А.А., Теоретические…, 1991).