Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
АНАЛИЗ_РИСКА_ТЕХНОГЕННЫХ_СИСТЕМ_монография.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
2.37 Mб
Скачать

2.11.2. Преобразование логических выражений методом карт

Карты алгебры логики представляют собой табличное изображение всех возможных событий. Рассмотрим представление на карте двух событий A и B.

Карта событий A и B может быть представлена в двух видах (рис. 2.27а и рис. 2.27б).

A 0

1

B

0

A не появляется

и

B не появляется

A появляется

и

B не появляется

1

A не появляется

и

B появляется

A появляется

и

B появляется

а

AB

00

01

11

10

б

Рис. 2.27. Варианты карт для событий A и B

Пример 2.11.1. Представить на карте функцию T = A + B.

Согласно правилу IV таблицы 2.13 . Для полного представления события A необходимо учесть как член AB, так и член .

A 0

1

B

0

1

T=A

1

1

AB

00

01

11

10

1

1

T=A

A 0

1

B

0

T=B

1

1

1

AB

00

01

11

10

1

1

T=B

A 0

1

B

0

1

T=A+B

1

1

1

AB

00

01

11

10

1

1

1

T=A+B

Рис. 2.28. Карта функций T=A+B

Представим функции T=A, T=B и T=A+B в виде таблиц (рис.2.28). Функция T=A+B представлена на нижней карте.

Карты двух переменных легко обобщаются на случай трёх и четырёх переменных. Каждый раз при появлении новой переменной число ячеек удваивается. Если карта двух переменных состояла из четырёх ячеек, то карта трёх переменных будет состоять из восьми ячеек (рис. 2.29), а карта четырёх переменных из 16 ячеек (рис.2.30). Другими словами, число ячеек равно 2n, где nчисло переменных.

AB

00

01

11

10

C

0

1

1

T=A+BC

1

2

1,2

1

1 2

Рис. 2.29. Карта событий для трёх переменных

AB

00

01

11

10

CD

00

2

1,2

1

01

2

1,2

1

11

4

1,3

1,3

10

1

1

Рис. 2.30. Карта событий для четырёх переменных

Правила отображения логических функций на картах состоят в следующем:

Шаг 1. Представляем функцию в виде суммы произведений;

Шаг 2. Выбираем поочерёдно произведения и вписываем единицы в ячейки карты, соответствующие каждому произведению.

Для каждого из произведений рассматриваются входящие в него переменные. Если переменная входит без отрицания, то она может попасть в таблицу функции. Однако в таблицу попадут лишь те из них, на которые не влияют ограничения, накладываемые другими произведениями.

Пример 2.11.2. Рассмотрим функцию T=A+BC, образованную слагаемыми A и BC. Слагаемое A входит без отрицания и вносится в карту. Это слагаемое не зависит от других переменных, которые должны быть представлены на карте всеми значениями. Это показано символами 1 на рис. 2.29. Во втором члене BC переменная B также становится кандидатом на внесение в ячейки таблицы, но она уже связана с переменной C. Следовательно, только в тех ячейках B появятся единицы, для которых C не имеет отрицания. Это обозначено символом 2 в ячейках таблицы рис. 2.29.

Процедура для двух переменных выглядит довольно просто. При построении карты для четырёх и пяти переменных уже требуется соблюдение регулярных правил заполнения ячеек.

Пример 2.11.3. Рассмотрим функцию , приведенную на рис. 2.30.

Единицы, принадлежащие A, попадут в ячейки, связанны с A, всех других переменных. Для отображения отбираются сначала восемь ячеек, связанных с переменной A, а затем выделяют четыре из них, связанные с величиной C (обозначено на карте символом 2). Для третьего члена ABC сначала выделяют ячейки переменной A без отрицания, затем из них выбирают ячейки с переменной C и далее те из выбранных ячеек, которые содержат величину D, не имеющую отрицания. Четвёртый член займет ячейку на пересечении столбца – 00 со строкой CD – 11.

Пример 2.11.4. Рассмотрим функцию произведения сумм T=(A+B)(C+D), которая часто встречается при анализе деревьев отказов.

Возможны два способа решения этой задачи.

Первый – предусматривает непосредственное построение карты по заданной функции, Для этого берутся все ячейки, соответствующие члену A+B, означающему все A или все B. Затем из них выделяются ячейки, соответствующие C+D, означающие все C или все D. Описанная процедура проиллюстрирована на рис. 2.31а.

AB

00

01

11

10

CD

00

01

1

1

1

11

1

1

1

10

1

1

1

а – T=(A+B)(C+D)

Другой путь заключается в почленном логическом перемножении переменных и представлении функции в виде T=AC + AD + BC + BD.

Далее заполняется карта, как показано на рис. 2.31б.

Второй метод предпочтительнее из-за своей простоты и последовательности. (Решить задачу 3).

AB

00

01

11

10

CD

00

01

4

2,4

2

11

2,4

1,2,3,4

1,2

10

3

1,3

1

б – T=AC + AD + BC + BD

1 2 3 4

Рис. 2.31. Карта функции T=(A+B)(C+D) и T=AC + AD + BC + BD