Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
2170.doc
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
4.85 Mб
Скачать

11.11. Гидроочистка

Гидроочистка – это первый процесс среди процессов гидроперера­бот­ки, который был реализован в промышленном масштабе. Основное назначение её состоит в облагораживании нефтяного сырья путем удале­ния из нефтепродуктов гетероатомных соединений, а также насыщение непре­дельных соединений и в небольшой степени полициклических ароматических углеводородов с помощью водорода. Процесс ведут в присутствии катализатора.

Главным достоинством процессов гидропереработки, в т.ч. и гидроочистки, состоит в возможности решения проблемы переработки сернистого и высокосернистого сырья с получением высококачественных нефтепродуктов, а также серы и серной кислоты.

11.1.1. Сырье гидроочистки. Гидроочистке подвергают следующие нефтяные фракции:

1) бензиновые – с целью подготовки сырья для процесса каталитического риформинга;

2) керосиновые – с целью получения малосернистого реактивного топ-лива, осветительного керосина и растворителей, содержание серы в которых не должно превышать 0,05–0,1 %. Содержание аренов в реактивном топливе РТ, ТС-1, Т-2 и Т-8 не должно превышать 18–22 %, а в Т-6 – 10–16 %. В будущем эти требования будут ужесточаться (снижение аренов до 18 % и серы до 0,003 % во всех марках реактивного топлива);

3) дизельные – с целью очистки от сернистых соединений. Необ­хо­ди­мый уровень содержания серы на ближайшие годы составляeт 0,003 %;

4) вакуумные дистилляты и нефтяные остатки – с целью снижения содержания в них гетеро- и металлоорганических соединений, смол и асфаль­тенов. Гидроочищенное сырье в дальнейшем поступает в процессы каталити­ческого крекинга, гидрокрекинга, получения электродного кокса и котель­но­го топлива;

5) парафины и масла – с целью улучшения их товарных свойств.

11.11.2. Химические основы процесса гидроочистки. В процессе гид-роочистки протекают процессы разрушения гетероатомных соединений с об-разованием воды, аммиака, сероводорода, металлов, а также насыщения не-предельных и частично ароматических соедине­ний.

Реакции сернистых соединений. Наиболее легко разлагаются в услови­ях процесса меркаптаны:

RSH + H2 RH + H2S. (11.70)

Если разложение меркаптанов происходит в одну стадию, то полное раз­ложение сульфидов до сероводорода протекает в две стадии:

RSR/ + H2 RH + R/SH (11.71)

и далее

R/SH + Н2 R/H + H2S. (11.72)

Полное гидрирование дисульфидов до сероводорода проходит тоже в два этапа:

RSSR/ + H2 RSН +R/HS (11.73)

и далее

RSН + R/ SН + 2Н2 RН +R/Н + 2Н2S. (11.74)

Гетероциклические соединения серы при гидроочистке подвергаются гидрогенолизу:

(11.75)

тиофан

(11.76)

алкилтиофен

(11.77)

алкилбензтиофан

Реакции азотсодержащих органических веществ. Азот в нефти и неф­те­продуктах содержится почти исключительно в гетероциклических структурах – производных пиррола и пиридина. Гидрогенолиз связи С – N протекает труднее чем связи С – S. Наиболее легко гидрируются амины:

С6Н5 – R – NH2 + H2 C6H5RH + NH3; (11.78)

(11.79)

п пиррол и

ррол

. (11.80)

пиридин

(11.81)

Реакции кислородных соединений

R COOH + 3H2 R CH3 +H2O; (11.82)

R OH + H2 R + H2O. (11.83)

Смолы и асфальтены в процессе гидроочистки превращаются в соеди­нения меньшей молекулярной массы. Металлоорганические соединения на активных катализаторах разлагаются с выделением свободного металла, являющимся, как правило, каталитическим ядом.

Применение гидроочистки в нефтепереработке позволяет довести кон­центрацию серы, азота и кислорода до тысячных долей процента. Эти гетеро­атомы удаляются из нефте­продуктов в виде сероводорода, аммиака и воды. По оценкам Р.З. Магарила, металлы удаляются из нефтепродуктов на 75–95 % (V – 95 %, Ni, Mg – 85 %, Cu – 80 %, Cr – 75 %).

Реакции углеводородов. В условиях процесса гидроочистки алканы и цик­лоалканы устойчивы. Ненасыщенные алициклические соединения и час­тично полициклические арены подвергаются гидри­рованию. Алкадиены гид-ри­руются до алканов при 300–500 оС и 0,5–2 МПа, алкены при 350–400 оС и 2–3 МПа, полициклические углеводороды – при той же темпера­туре, что и алкены, но при давлении 3–7 МПа.

RCH = CH2 + H2 RCH2 – CH3; (11.84)

(11.85)

11.11.3. Катализаторы гидроочистки. В промышленности наиболее ши­роко применяют алюмокобальтмолибденовые (АКМ) и алюмоникельмо­либ­деновые (АНМ) катализаторы. Состав катализатора оказывает существен­ное влияние на избирательность процесса. Каждый вид сырья требует приме­не­­ния катализатора определенного состава. Каталитические композиции го­то­вят на основе оксидов и сульфидов металлов VI и VIII групп (никель, хром, кобальт, железо, вольфрам, молибден), нанесенных на -Al2O3.

АКМ-катализатор имеет высокую активность и селективность в отноше-нии реакций обессеривания, почти не сопровождающиеся гидрокрекингом, и достаточно активен в отношении насыщения непредельных углеводородов.

АНМ-катализатор активен при гидрировании ароматических углеводо-родов и азотсодержащих соединений. Поэтому этот катализатор рекомендуют применять для очистки тяжелого высокоароматизованного сырья катали­тического крекинга.

Предполагается, что активные компоненты, содержащие Ni или Со на поверхности оксида алюминия, находятся в виде кластеров или микрокри­сталлов.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]