Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЕГЭ2013.doc
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
958.98 Кб
Скачать

Часть 1

В2.

Ответом на задания В1-В14 должно быть целое число или конеч­ная десятичная дробь. Ответ следует записать в бланк ответов № 1 справа от номера выполняемого задания, начиная с первой клеточки. Каждую цифру, знак минус и десятичную запятую пишите в отдельной клеточке в соответствии с приведенными в бланке образцами. Единицы измерений писать не нужно.

В1. Магазин открывается в 10 часов утра, а закрывается в 10 часов вечера. Обеденный перерыв длится с 15 до 16 часов. Сколько ча­сов в день открыт магазин?

На рисунке жирными точками показана цена никеля на момент закрытия биржевых торгов во все рабочие дни с 10 по 26 ноября 2008 года. По горизонтали указываются числа месяца, по вертикали — цена тонны никеля в долларах США. Для наглядности жирные точки на рисунке соединены линией. Определите по рисунку наибольшую цену никеля на момент закрытия торгов в указанный период (в долларах США за тонну).

ВЗ. Найдите площадь S сектора. В ответе

укажите —. Размер каждой клетки к

Цена тонны никеля

10 11 12 13 14 17 18 19 20 21 24 25 26

12000 11800' 11600 11400 11200 11000 10800 10600 10400 10200 10000 9800

1 см х 1 см. Ответ дайте в квадратных сантиметрах.

дни

1 C1V

о

А

X

£

ШШЯш ШШЯш

шВЯ .

f^p

А

у

1111

в

В4. В таблице даны тарифы на услуги трех фирм такси. Предполага­ется поездка длительностью 70 минут. Нужно выбрать фирму, в которой заказ будет стоить дешевле всего. Сколько рублей будет стоить этот заказ?

Фирма такси

Подача машины

Продолжительность и стоимость (минимальной поездки*)

Стоимость 1 минуты сверх продолжи­тельности мини­мальной поездки

А

200

Нет

13

Б

Бесплатно

15 мин. — 300 руб.

18

В

180

10 мин. — 200 руб.

14


В5. Найдите корень уравнения log7(* - 6) = 2.

В6. В треугольнике ABC угол С равен 90°, угол А равен 60°, АВ = 8. Найдите АС.

i

#f

ш

А

В7. Вычислите значение выражения 3logs7 + 49*7ч/Г*.

В8. На рисунке изображен график некоторой функции у = /(х). Поль­зуясь рисунком, вычислите определенный интеграл

-1

I

Jf(x)dx.

У~/(х)

У ,

2

/-1

0

X


В9. В правильной треугольной пирамиде SABC ребра АВ и АС разде­лены точками К и М соответственно в отношении 2:1, считая от вершины А (см. рис.) Найдите угол между плоскостью основания ABC и плоскостью сечения SKM. Ответ выразите в градусах.

5*

В10. При двукратном бросании игрального кубика в сумме выпало 6 очков. Найдите вероятность того, что в первый раз выпало меньше 3 очков.

В11. В цилиндрическом сосуде уровень жидкости достигает 384 см. На какой высоте будет находиться уровень жидкости, если ее пере­лить во второй цилиндрический сосуд, диаметр которого в 8 раз больше диаметра первого? Ответ выразите в сантиметрах.

В12. Коэффициент полезного действия (КПД) некоторого двигателя

Т -Т

определяется формулой г| = — - • 100% , где Т\ — температура

нагревателя (в градусах Кельвина), Т2 температура холодиль­ника (в градусах Кельвина). При какой температуре нагревателя Ti КПД двигателя будет 15%, если температура холодильника Т2 = 340° К? Ответ выразите в градусах Кельвина.

В13. Численность волков в двух заповедниках в 2009 году составляла 220 особей. Через год обнаружили, что в первом заповеднике чис­ленность волков возросла на 10%, а во втором — на 20%. В ре­зультате общая численность волков в двух заповедниках составила 250 особей. Сколько волков было в первом заповеднике в 2009 году?

В14. Найдите наименьшее значение функции fix) = х3 +3х2 -3 на от­резке [-2; 1].

Для записи решений и ответов на задания С1-С6 используйте бланк ответов № 2. Запишите сначала номер выполняемого задания, а затем полное обоснованное решение и ответ.

С1. а) Решите уравнение 4х - 2Х+3 +12 = 0.

б) Укажите корни этого уравнения, принадлежащие отрезку [2; 3].

С2. Диаметр окружности основания цилиндра равен 20, образующая цилиндра равна 28. Плоскость пересекает его основания по хордам длины 12 и 16. Найдите тангенс угла между этой плоскостью и плоскостью основания цилиндра.

СЗ. Решите неравенство logx+2 (36 +16* - х2) - — log2x+2 -18)2 > 2 .

16

С4. В трапеции ABCD известны боковые стороны АВ = 27, CD = 28 и

2

верхнее основание ВС = 5. Известно, что cos ZBCD = - — . Най­дите АС.

С5. НайдиТе все значения а, при каждом из которых система

(* - а)(ах - 2а - 3) > 0, ах >4 не имеет решений.

_

ш

Сб. Найдите наибольший общий делитель всех чисел вида р2 -1, где р — простое число, большее 3, но меньшее 2010.