
- •1. Общая теория систем, ее происхождение, место среди других наук
- •2. Понятия «система», «системность»
- •3. Общие свойства систем
- •4. Способы описания свойств систем
- •5. Методологические подходы к исследованию и моделированию систем управления
- •6. Принципы системного подхода
- •1.1. Технология
- •2.2. Информационная технология
- •3.3. Этапы развития информационных технологий
- •4.4. Классификация информационных технологий
- •5.5. Информационная система
- •6.6. Классификация информационных систем
- •1.1. Этапы цикла разработки информационных систем и их целевая продукция
- •2.2. Системные исследования
- •3.3. Системный анализ
- •4.4. Системное проектирование
- •5.5. Внедрение
- •6.6. Сопровождение
- •1. Методология разработки сложных программных систем
- •2.2. Основные принципы организации работы над проектом
- •3.3. Методология Rational Unified Process (rup)
- •4.4. Моделирование и проектирование
- •5.5. Средства разработки по
- •6.6. Тестирование
- •1. Функциональное тестирование
- •2. Нагрузочное тестирование
- •7.7. Управление проектами и портфелями
- •8.8. Управление требованиями
- •9.9. Управление конфигурациями и изменениями
- •10.10. Автоматизированное тестирование
- •11.11. Управление выполнением проекта и документированием
- •Ibm Rational ProjectConsole
- •Ibm Rational SoDa
- •12.12. Ibm Software Development Platform – новый подход к разработке программного обеспечения
- •13.13. Инструментальные средства ibm Rational
- •Ibm Team Unifying Platform. Эффективная организация совместной работы над проектом
- •14.14. Ibm Rational – состав пакетов и краткое описание продуктов
- •6. Знания, виды знаний, базы знаний, банки знаний
- •7.2. Модели представления знаний
- •8.3. Стратегии получения знаний
- •2.2. Нейронные сети
- •3.3. Нечеткая логика
- •4.4. Генетические алгоритмы
- •8.8. Системы поддержки принятия решений
- •9.9. Этапы проектирования системы поддержки принятия решения
- •1.1. Почему растет популярность Data Mining?
- •2.2. Определение Data Mining
- •3.3. Области применения Data Mining
- •3.1.Розничная торговля
- •3.2.Банковское дело
- •3.3.Телекоммуникации
- •3.4.Страхование
- •3.5.Другие приложения в бизнесе
- •3.6.Медицина
- •3.7.Фармацевтика
- •3.8.Молекулярная генетика и генная инженерия
- •5.5. Классы систем Data Mining
- •6.6. Десять мифов интеллектуального анализа данных
- •7.7. Шесть шагов к успеху в интеллектуальном анализе данных
- •8.8. Инструментарий технологии Data Mining
- •1.1. Особенности корпоративных информационных систем
- •2.2. Принципы создания и требования к корпоративной информационной системе
- •3.3. Управление проектами внедрения корпоративной информационной системы
- •4.4. Основные принципы выбора по для построения корпоративной информационной системы
- •5.2. Принципы создания и требования к корпоративной информационной системе
- •6.3. Управление проектами внедрения корпоративной информационной системы
- •7.4. Основные принципы выбора по для построения корпоративной информационной системы
- •8.3. Управление проектами внедрения корпоративной информационной системы
- •9.4. Основные принципы выбора по для построения корпоративной информационной системы
- •10.4. Основные принципы выбора по для построения корпоративной информационной системы
- •11.Корпоративные системы управления
- •12.2. Классические схемы разработки корпоративных систем
- •13.3. Адаптивная организация проектных работ
- •14.4. Организация управления по критериям качества
- •15.2. Классические схемы разработки корпоративных систем
- •16.3. Адаптивная организация проектных работ
- •17.4. Организация управления по критериям качества
- •1.1. Необходимость Workflow
- •2.2. Отражение новых принципов управления
- •3.1. Что такое erp
- •4.2. Управление запасами и производством
- •5.3. Учет и управление финансами
- •6.4. Интеграция erp-систем с системами других классов
- •7.5. Электронный бизнес
- •8.6. Технология и практика проектирования erp-систем
- •9.7. Внедрение erp-систем. Основные ошибки
- •10.8. Технология внедрения корпоративной информационной системы класса erp
- •11.1. Методология baan
- •12.1. Структура корпоративной информационной системы «Галактика», 8.1
- •13.1. Система Галактика-Производство 7.1 как современный инструмент координации деятельности предприятия
- •14.2. Состав системы Галактика-Производство 7.1
- •15.3. Контур Логистики
- •16.4. Контур Управления производством
- •17.5. Контур Бухгалтерского учета
- •18.1. Программы серии "Аналитик"
- •19.2. Этапы развития
8.8. Системы поддержки принятия решений
Системы поддержки принятия решений (СППР) – это особые интерактивные информационные системы, использующие оборудование, программное обеспечение, данные, базу моделей и труд менеджера с целью поддержки всех стадий принятия полуструктурируемых и неструктурируемых решений непосредственными пользователями-менеджерами в процессе аналитического моделирования на основе предоставленного набора технологий.
9.9. Этапы проектирования системы поддержки принятия решения
Этапами проектирования системы поддержки принятия решения при наличии программной оболочки являются:
описание предметной области, целей создания системы и выполнение постановки задачи;
составление словаря системы;
разработка базы знаний и базы данных;
внедрение системы.
Этап 1. Описание предметной области, целей создания системы и выполнение постановки задачи. Описание должно отражать специфику предметной области в нескольких формах. Первая из них - это текстовое представление содержание процессов, объектов и связей между ними. Вторая форма описания представляет собой графическое представление дерева целей, стоящих перед пользователем, или дерева И-ИЛИ.
Постановка всякой задачи предполагает указание результатов функционирования системы, исходных данных, а также общее описание процедур, формул и алгоритмов преобразования исходных данных в результирующие данные.
Этап 2. Составление словаря системы. Словарь системы - это набор слов, фраз, кодов, наименований, используемых разработчиком для обозначения условий, целей, заключений и гипотез. Благодаря словарю пользователь понимает результаты работы системы. Составление словаря - важная работа, ибо четко сформулированные условия и ответы резко повышают эффективность эксплуатации системы.
Этап 3. Разработка базы знаний и базы данных. База знаний, как правило, состоит из двух компонентов: дерева целей с расчетными формулами и базы правил (сеть вывода). База правил создается на основании графа целей и сформулировавши ранее гипотез. Главное внимание здесь уделяется коэффициентам определенности исходных условий и правил их обработки.
Этап 4. Внедрение. Проверяется и оцениваются правильность работы системы. Устанавливаются результаты, которые затем сравниваются с полученными в процессе запуска системы. Проверяются также промежуточные расчеты с помощью блока, отвечающего на вопросы как и почему.
Тема: Технология Data Mining
1. Почему растет популярность Data Mining? 1
2. Определение Data Mining 2
3. Области применения Data Mining 3
3.1. Розничная торговля 3
3.2. Банковское дело 3
3.3. Телекоммуникации 3
3.4. Страхование 3
3.5. Другие приложения в бизнесе 4
3.6. Медицина 4
3.7. Фармацевтика 4
3.8. Молекулярная генетика и генная инженерия 4
3.9. Прикладная химия 4
3.10. Управление производством 4
3.11. Наука и техника 4
4. Типы закономерностей 4
5. Классы систем Data Mining 5
6. Десять мифов интеллектуального анализа данных 6
7. Шесть шагов к успеху в интеллектуальном анализе данных 8
8. Инструментарий технологии Data Mining 8
1.1. Почему растет популярность Data Mining?
Мы живем в веке информации. В связи с совершенствованием технологий записи и хранения данных на людей обрушились колоссальные потоки информации в самых различных областях. Трудно переоценить значение данных, которые мы непрерывно собираем в процессе нашей деятельности, в управлении бизнесом или производством, в банковском деле, в решении научных, инженерных и медицинских задач.
Деятельность любого предприятия (коммерческого, производственного, медицинского, научного и т.д.) теперь сопровождается регистрацией и записью всех подробностей его деятельности. Мощные компьютерные системы, хранящие и управляющие огромными базами данных, стали неотъемлемым атрибутом жизнедеятельности, как крупных корпораций, так и даже небольших компаний.
Без продуктивной переработки потоки сырых данных образуют никому не нужную свалку. Наличие данных само по себе еще недостаточно для улучшения показателей работы. Нужно уметь трансформировать "сырые" данные в полезную для принятия важных бизнес решений информацию. В этом и состоит основное предназначение технологий Data Mining.
Необходимость автоматизированного интеллектуального анализа данных стала очевидной в первую очередь из-за огромных массивов исторической и вновь собираемой информации. Трудно даже приблизительно оценить объем ежедневных данных, накапливаемых различными компаниями, государственными, научными и медицинскими организациями. По мнению исследовательского центра компании GTE только научные институты собирают ежедневно около терабайта новых данных! А ведь академический мир далеко не самый главный поставщик информации. Человеческий ум, даже такой тренированный, как ум профессионального аналитика, просто не в состоянии своевременно анализировать столь огромные информационные потоки.
Другой причиной роста популярности Data Mining является объективность получаемых результатов. Человеку-аналитику, в отличие от машины, всегда присущ субъективизм, он в той или иной степени является заложником уже сложившихся представлений. Иногда это полезно, но чаще приносит большой вред.
И, наконец, Data Mining дешевле. Оказывается, что выгоднее инвестировать деньги в решения Data Mining, чем постоянно содержать целую армию высоко подготовленных и дорогих профессиональных статистиков. Data Mining вовсе не исключает полностью человеческую роль, но значительно упрощает процесс поиска знаний, делая его доступным для более широкого круга аналитиков, не являющихся специалистами в статистике, математике или программировании.
Итак, современная специфика такова, что:
данные имеют неограниченные объем;
данные являются разнородными (количественными, качественными, текстовыми);
результаты должны быть конкретны и понятны;
инструменты для обработки сырых данных должны быть просты в использовании.