
- •1. Общая теория систем, ее происхождение, место среди других наук
- •2. Понятия «система», «системность»
- •3. Общие свойства систем
- •4. Способы описания свойств систем
- •5. Методологические подходы к исследованию и моделированию систем управления
- •6. Принципы системного подхода
- •1.1. Технология
- •2.2. Информационная технология
- •3.3. Этапы развития информационных технологий
- •4.4. Классификация информационных технологий
- •5.5. Информационная система
- •6.6. Классификация информационных систем
- •1.1. Этапы цикла разработки информационных систем и их целевая продукция
- •2.2. Системные исследования
- •3.3. Системный анализ
- •4.4. Системное проектирование
- •5.5. Внедрение
- •6.6. Сопровождение
- •1. Методология разработки сложных программных систем
- •2.2. Основные принципы организации работы над проектом
- •3.3. Методология Rational Unified Process (rup)
- •4.4. Моделирование и проектирование
- •5.5. Средства разработки по
- •6.6. Тестирование
- •1. Функциональное тестирование
- •2. Нагрузочное тестирование
- •7.7. Управление проектами и портфелями
- •8.8. Управление требованиями
- •9.9. Управление конфигурациями и изменениями
- •10.10. Автоматизированное тестирование
- •11.11. Управление выполнением проекта и документированием
- •Ibm Rational ProjectConsole
- •Ibm Rational SoDa
- •12.12. Ibm Software Development Platform – новый подход к разработке программного обеспечения
- •13.13. Инструментальные средства ibm Rational
- •Ibm Team Unifying Platform. Эффективная организация совместной работы над проектом
- •14.14. Ibm Rational – состав пакетов и краткое описание продуктов
- •6. Знания, виды знаний, базы знаний, банки знаний
- •7.2. Модели представления знаний
- •8.3. Стратегии получения знаний
- •2.2. Нейронные сети
- •3.3. Нечеткая логика
- •4.4. Генетические алгоритмы
- •8.8. Системы поддержки принятия решений
- •9.9. Этапы проектирования системы поддержки принятия решения
- •1.1. Почему растет популярность Data Mining?
- •2.2. Определение Data Mining
- •3.3. Области применения Data Mining
- •3.1.Розничная торговля
- •3.2.Банковское дело
- •3.3.Телекоммуникации
- •3.4.Страхование
- •3.5.Другие приложения в бизнесе
- •3.6.Медицина
- •3.7.Фармацевтика
- •3.8.Молекулярная генетика и генная инженерия
- •5.5. Классы систем Data Mining
- •6.6. Десять мифов интеллектуального анализа данных
- •7.7. Шесть шагов к успеху в интеллектуальном анализе данных
- •8.8. Инструментарий технологии Data Mining
- •1.1. Особенности корпоративных информационных систем
- •2.2. Принципы создания и требования к корпоративной информационной системе
- •3.3. Управление проектами внедрения корпоративной информационной системы
- •4.4. Основные принципы выбора по для построения корпоративной информационной системы
- •5.2. Принципы создания и требования к корпоративной информационной системе
- •6.3. Управление проектами внедрения корпоративной информационной системы
- •7.4. Основные принципы выбора по для построения корпоративной информационной системы
- •8.3. Управление проектами внедрения корпоративной информационной системы
- •9.4. Основные принципы выбора по для построения корпоративной информационной системы
- •10.4. Основные принципы выбора по для построения корпоративной информационной системы
- •11.Корпоративные системы управления
- •12.2. Классические схемы разработки корпоративных систем
- •13.3. Адаптивная организация проектных работ
- •14.4. Организация управления по критериям качества
- •15.2. Классические схемы разработки корпоративных систем
- •16.3. Адаптивная организация проектных работ
- •17.4. Организация управления по критериям качества
- •1.1. Необходимость Workflow
- •2.2. Отражение новых принципов управления
- •3.1. Что такое erp
- •4.2. Управление запасами и производством
- •5.3. Учет и управление финансами
- •6.4. Интеграция erp-систем с системами других классов
- •7.5. Электронный бизнес
- •8.6. Технология и практика проектирования erp-систем
- •9.7. Внедрение erp-систем. Основные ошибки
- •10.8. Технология внедрения корпоративной информационной системы класса erp
- •11.1. Методология baan
- •12.1. Структура корпоративной информационной системы «Галактика», 8.1
- •13.1. Система Галактика-Производство 7.1 как современный инструмент координации деятельности предприятия
- •14.2. Состав системы Галактика-Производство 7.1
- •15.3. Контур Логистики
- •16.4. Контур Управления производством
- •17.5. Контур Бухгалтерского учета
- •18.1. Программы серии "Аналитик"
- •19.2. Этапы развития
6. Знания, виды знаний, базы знаний, банки знаний
Существуют различные определения понятия «знания».
Знания – это основные закономерности предметной области, позволяющие человеку решать конкретные производственные, научные и другие задачи, то есть факты, понятия, взаимосвязи, оценки, правила, эвристики (иначе фактически знания), а также стратегии принятия решений в этой области (иначе стратегические знания)
Под «знаниями» понимают формализованную информацию, на которую ссылаются или которую используют в процессе решения задачи. Знание о предметной области включает описание объектов, их окружения, необходимых явлений, фактов, а также отношений между ними. Сложность понятия «знание» заключена во множественности его носителя и неразрывности с понятием «данные».
Выделяют несколько уровней формализации знания о предметной области:
знания в памяти человека;
знания в форме языковой модели предметной области, используемые человеком и зафиксированные на физических носителях с использованием контекстно-зависимых языков, графических образов и т.п.;
знания, формализованные для их представления при использовании в ЭВМ;
фактографические сведения или данные.
Знания обычно разделяют на 2 большие категории: факты и эвристики. Первая категория (факты) указывает на хорошо известные в той или иной предметной области обстоятельства. Такие знания еще называют текстовыми, имея в виду достаточную их освещенность в специальной литературе и учебниках. Вторая категория (эвристики) основывается на индивидуальном опыте специалиста (эксперта) в предметной области, накопленном в результате многолетней практики. Эта категория нередко играет решающую роль при построении интеллектуальных программ.
База знаний - это совокупность моделей, правил и факторов (данных), порождающих анализ и выводы для нахождения решений сложных задач в некоторой предметной области.
7.2. Модели представления знаний
Наиболее распространенными моделями представления знаний являются:
продукционные системы;
логические модели;
фреймы;
семантические сети.
В продукционных системах знания представляются в виде совокупности специальных информационных единиц, имеющих следующую структуру:
Имя продукции: name
Предусловие
Условие
Если А, то В
Постусловие
В общем случае продукционная система включает следующие компоненты:
базу данных, содержащую множество фактов;
базу правил, содержащую набор продукций;
интерпретатор (механизм логического вывода) или правила работы с продукциями.
База правил и база данных образуют базу знаний. Факты в базе данных представляют собой краткосрочную информацию и в принципе могут изменяться в ходе работы продукционной системы по море накопления опыта. Правила являются более долговременной информацией и предназначены для порождения гипотез (новых фактов) из того, что уже известно.
Продукции по сравнению с другими формами представления знаний имеют следующие преимущества:
модульность;
единообразие структуры (основные компоненты продукционной системы могут применяться для построения интеллектуальных систем с различной проблемной ориентацией);
естественность (вывод заключения в продукционной системе во многом аналогичен процессу рассуждений эксперта);
гибкость родовидовой иерархии понятий, которая поддерживается только как связи между правилами (изменение правила влечет за собой изменение иерархии).
Однако продукционные системы не свободны от недостатков:
процесс вывода менее эффективен, чем в других системах, поскольку большая часть времени при выводе затрачивается на непроизводительную проверку применимости правил;
этот процесс трудно поддается управлению;
сложно представить родовидовую иерархию понятий.
Логические модели представления знаний реализуются средствами логики предикатов.
Предикатом называется функция, принимающая только два значения - истина и ложь – и предназначенная для выражения свойств объектов или связей между ними. Выражение, в котором утверждается или отрицается наличие каких-либо свойств у объекта, называется высказыванием.
В общем случае модели, основанные на логике предикатов, описываются формальной системой, которая задается четверкой:
М=(Т, Р, А, П), где
Т – множество базовых элементов или алфавит формальной системы;
Р – множество синтаксических правил, с помощью которых можно строить синтаксически корректные предложения;
А – множество аксиом или некоторых синтаксически правильных предложений, заданных априорно;
П – правила продукций (правила вывода или семантические правила), с помощью которых можно расширять множество А, добавляя в него синтаксически правильные предложения.
Фрейм чаще всего определяют как структуру данных для представления стереотипных ситуаций. Фреймы (дословно - «рамка») – это единица представления знаний, детали которой могут изменяться в соответствии с текущей ситуацией. Фрейм в любой момент времени может быть дополнен различной информацией, касающейся способов применения данного фрейма, последствий этого применения и т.п.
Семантическая сеть описывает знания в виде сетевых структур. В качестве вершин сети выступают понятия, факты, объекты, события и т.п., а в качестве дуг сети – отношения, которыми вершины связаны между собой.