- •Математические пакеты. Курс лекций Введение
- •1 Анализ состояния рынка математических пакетов
- •1.1 Цели и задачи математического моделирования
- •1.2 Принципы построения математических моделей
- •1.2.1 Основные этапы моделирования
- •1.2.2 Постановка задачи моделирования
- •1.2.3 Построение схемы модели, выделение основных частей и процессов
- •1.2.4 Математическое описание основных частей и процессов
- •1.2.5 Построение решения, связывающего изменяемые параметры и критерий оптимизации
- •1.2.6 Исследование решения на экстремум
- •1.3 Обзор прикладных пакетов математического моделирования
- •1.3.1 Пакеты общего назначения
- •1.3.2 Альтернативные пакеты
- •1.3.3 Специализированные пакеты
- •1.3.4 Узкоспециализированные пакеты
- •1.3.5 Пакеты статистического анализа данных
- •1.4 Применение математических пакетов в интернет технологиях
- •1.4.1 Проприетарные математические программы и пакеты в Интернете
- •1.4.2 Свободные кроссплатформенные математические программы и пакеты в Интернете
- •1.4.3 Математические программы и пакеты реализованные на языках программирования
- •1.4.4 Библиотеки алгоритмов
- •1.4.5 Математические порталы, универсальные библиотеки текстов программ и статей по математической тематике
- •1.4.6 Специализированные библиотеки текстов программ и статей по математической тематике
- •1.4.7 Обзор информационных ресурсов Интернета по математике
- •1.4.8 Поиск и просмотр математической литературы
- •1. Поиск и просмотр математической литературы.
- •1.4.9 Математические документы в Интернете
- •1.4.10 Языки разметки для создания электронных публикаций
- •1.Языки разметки для создания электронных публикаций.
- •1.4.11 Математические конференции в Интернете
- •2 Математические пакеты
- •2.1 Математический пакет MathCad
- •2.1.1 Основные возможности MathCad
- •2.1.2 Особенности интерфейса
- •2.1.3 Особенности при работе с графикой
- •2.1.4 Расширение функциональности Mathcad
- •2.1.5 Взаимодействие с другими программами
- •2.1.6 Использование компонентов
- •2.1.7 Комплектации
- •2.2 Математический пакет Mupad
- •2.3 Математический пакет MatLab
- •2.3.1 Язык MatLab
- •2.3.2 Ключевые возможности Matlab
- •2.3.3 Расширение функциональности Matlab. Библиотеки
- •2.3.4 Возможности использования некоторых библиотек Matlab
- •2.3.5 Математика и вычисления Matlab
- •2.3.6 Альтернативные пакеты. SciLab
- •2.3.7Альтернативные пакеты. Oktave
- •2.4 Математический пакет Maple
- •2.4.1 Интерфейс Maple
- •2.4.2 Вычисления в Maple
- •2.4.3 Графика в Maple
- •2.4.4 Специализированные приложения Maple
- •2.4.5 Программирование Maple
- •2.4.6 Интернет-совместимость Maple
- •2.4.7. Перспективы развития Maple
- •2.4.8 Альтернативные пакеты Maple
- •2.5 Пакет Mathematica
- •2.5.1 Альтернативные пакеты
- •2.6 Пакет для построения графиков и функций FlatGraph
- •3 Среда Scilab
- •3.1 Введение в среду Scilab
- •3.3 Основы работы в Scilab
- •3.3.1 Текстовые комментарии
- •3.3.2 Элементарные математические выражения
- •3.3.3 Переменные в Scilab
- •3.3.4 Системные переменные Scilab
- •3.4 Функции в Scilab
- •3.4.1 Элементарные математические функции
- •3.5 Контрольные вопросы
1 Анализ состояния рынка математических пакетов
1.1 Цели и задачи математического моделирования
Наиболее частой, если не единственной, целью построения математической модели является задача оптимизации моделируемого объекта.
Не менее часто задачей математического моделирования является получение неких количественных значений при заданных параметрах. Этот случай, суть, задача оптимизации, ибо целью такого расчета является проверка допустимости этих значений. Например, расчет механических напряжений в сложной несущей конструкции.
Следует помнить, что математическое моделирование не есть процесс создания чего-то нового и неизведанного. В большинстве случаев — это грамотное применение хорошо известных фактов и методов к конкретному объекту.
Как следствие, прикладные системы математического моделирования не панацея от всех проблем, а только лишь средство облегчить вычисления (или иные операции) в случаях, когда вычисления неизбежны.
1.2 Принципы построения математических моделей
1.2.1 Основные этапы моделирования
Весь процесс моделирования можно подразделить на следующие этапы:
постановка задачи моделирования;
построение схемы модели, выделение основных частей и процессов;
определение критерия оптимизации или значения, которое надо рассчитать;
выделение основных изменяемых параметров;
математическое описание основных частей и процессов;
построение решения, связывающего изменяемые параметры и критерий оптимизации или рассчитываемое значение;
исследование решения на экстремум или расчет искомого параметра.
1.2.2 Постановка задачи моделирования
Постановка задачи обычно формулируется в виде словесного описания. На этапе постановки должен быть описан объект моделирования, цели построения модели и критерии оптимизации.
1.2.3 Построение схемы модели, выделение основных частей и процессов
На этом этапе, на базе постановки задачи, объект моделирования делится на основные части и определяется перечень процессов взаимодействия этих частей.
Здесь пакеты общего назначения также ничем помочь не могут. Специализированные пакеты, обычно, уже содержат элементы деления модели на части для своей предметной области.
Должен быть сформулирован поддающийся количественной оценке критерий оптимизации или искомый количественный параметр.
Должен быть сформулирован перечень всех изменяемых параметров и их характерное количественное выражение.
1.2.4 Математическое описание основных частей и процессов
Взаимодействие частей модели должно быть выражено математическими формулами. Раздел математики, который будет использован для описания, выбирается из соображений удобства. Т.е. прежде всего, этот раздел должен иметь возможность количественного описания данного типа взаимодействий.
Результатом этого этапа является система уравнений или иных математических выражений формально описывающая взаимодействие частей и допускающая решение, т.е. получение зависимости: критерий оптимизации как функция изменяемых параметров.
В частности, желательна замкнутость системы уравнений и наличие формального доказательства существования решения.
Здесь пакетам общего назначения предоставляют только аппарат. Специализированные пакеты, обычно, имеют предопределенный математический аппарат и опираются на готовое математическое описание задачи.
1.2.5 Построение решения, связывающего изменяемые параметры и критерий оптимизации
Строится РЕШЕНИЕ, т.е. определяется явная функциональная связь: критерий оптимизации или расчетный параметр как функция изменяемых параметров.
Именно этот этап и есть основное поле приложения сил прикладных пакетов математического моделирования. Это связано с тем, что аналитические решения для математического описания сложных объектов обычно невозможны. И построение решения сводится к построению «численного решателя», который по заданным значениям изменяемых параметров может вычислить значение критерия оптимизации.
В редких случаях существования аналитического решения модели, роль прикладных пакетов математического моделирования низводится до определения функции-решения.
Существуют особые подсистемы прикладных пакетов математического моделирования — системы аналитических (символьных) вычислений — эти подсистемы могут использоваться для максимизации аналитичности решения, т.е. замены численных методов на поиск функционального выражения решений. Аналитические решения практически всегда «лучше» численных, ибо позволяют выразить искомые закономерности через известные функции, что сильно ускоряет расчеты и повышает точность вычислений.
