Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Курс лекций МАТЕМАТИЧЕСКИЕ ПАКЕТЫ.doc
Скачиваний:
6
Добавлен:
01.03.2025
Размер:
4.08 Mб
Скачать

1 Анализ состояния рынка математических пакетов

1.1 Цели и задачи математического моделирования

Наиболее частой, если не единственной, целью построения математической модели является задача оптимизации моделируемого объекта.

Не менее часто задачей математического моделирования является получение неких количественных значений при заданных параметрах. Этот случай, суть, задача оптимизации, ибо целью такого расчета является проверка допустимости этих значений. Например, расчет механических напряжений в сложной несущей конструкции.

Следует помнить, что математическое моделирование не есть процесс создания чего-то нового и неизведанного. В большинстве случаев — это грамотное применение хорошо известных фактов и методов к конкретному объекту.

Как следствие, прикладные системы математического моделирования не панацея от всех проблем, а только лишь средство облегчить вычисления (или иные операции) в случаях, когда вычисления неизбежны.

1.2 Принципы построения математических моделей

1.2.1 Основные этапы моделирования

Весь процесс моделирования можно подразделить на следующие этапы:

постановка задачи моделирования;

построение схемы модели, выделение основных частей и процессов;

определение критерия оптимизации или значения, которое надо рассчитать;

выделение основных изменяемых параметров;

математическое описание основных частей и процессов;

построение решения, связывающего изменяемые параметры и критерий оптимизации или рассчитываемое значение;

исследование решения на экстремум или расчет искомого параметра.

1.2.2 Постановка задачи моделирования

Постановка задачи обычно формулируется в виде словесного описания. На этапе постановки должен быть описан объект моделирования, цели построения модели и критерии оптимизации.

1.2.3 Построение схемы модели, выделение основных частей и процессов

На этом этапе, на базе постановки задачи, объект моделирования делится на основные части и определяется перечень процессов взаимодействия этих частей.

Здесь пакеты общего назначения также ничем помочь не могут. Специализированные пакеты, обычно, уже содержат элементы деления модели на части для своей предметной области.

Должен быть сформулирован поддающийся количественной оценке критерий оптимизации или искомый количественный параметр.

Должен быть сформулирован перечень всех изменяемых параметров и их характерное количественное выражение.

1.2.4 Математическое описание основных частей и процессов

Взаимодействие частей модели должно быть выражено математическими формулами. Раздел математики, который будет использован для описания, выбирается из соображений удобства. Т.е. прежде всего, этот раздел должен иметь возможность количественного описания данного типа взаимодействий.

Результатом этого этапа является система уравнений или иных математических выражений формально описывающая взаимодействие частей и допускающая решение, т.е. получение зависимости: критерий оптимизации как функция изменяемых параметров.

В частности, желательна замкнутость системы уравнений и наличие формального доказательства существования решения.

Здесь пакетам общего назначения предоставляют только аппарат. Специализированные пакеты, обычно, имеют предопределенный математический аппарат и опираются на готовое математическое описание задачи.

1.2.5 Построение решения, связывающего изменяемые параметры и критерий оптимизации

Строится РЕШЕНИЕ, т.е. определяется явная функциональная связь: критерий оптимизации или расчетный параметр как функция изменяемых параметров.

Именно этот этап и есть основное поле приложения сил прикладных пакетов математического моделирования. Это связано с тем, что аналитические решения для математического описания сложных объектов обычно невозможны. И построение решения сводится к построению «численного решателя», который по заданным значениям изменяемых параметров может вычислить значение критерия оптимизации.

В редких случаях существования аналитического решения модели, роль прикладных пакетов математического моделирования низводится до определения функции-решения.

Существуют особые подсистемы прикладных пакетов математического моделирования — системы аналитических (символьных) вычислений — эти подсистемы могут использоваться для максимизации аналитичности решения, т.е. замены численных методов на поиск функционального выражения решений. Аналитические решения практически всегда «лучше» численных, ибо позволяют выразить искомые закономерности через известные функции, что сильно ускоряет расчеты и повышает точность вычислений.