Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
396393.rtf
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
8.87 Mб
Скачать

14. Каково строение мицелл лиофобных золей? Покажите это на примере мицеллы золя сульфида сурьмы (го)?

Лиофобные коллоиды обладают очень высокой поверхностной энергией и являются поэтому термодинамически неустойчивыми; это делает возможным самопроизвольный процесс уменьшения степени дисперсности дисперсной фазы (т.е. объединение частиц в более крупные агрегаты) – коагуляцию золей. Тем не менее, золям присуща способность сохранять степень дисперсности – агрегативная устойчивость, которая обусловлена, во-первых, снижением поверхностной энергии системы благодаря наличию на поверхности частиц дисперсной фазы двойного электрического слоя и, во-вторых, наличием кинетических препятствий для коагуляции в виде электростатического отталкивания частиц дисперсной фазы, имеющих одноименный электрический заряд.

Строение структурной единицы лиофобных коллоидов – мицеллы – может быть показано лишь схематически, поскольку мицелла не имеет определенного состава. Рассмотрим строение коллоидной мицеллы на примере гидрозолясульфида сурьмы.

Коллоидная мицелла золя сульфида сурьмы (см. рис. 1) образована микрокристаллом иодида серебра, который способен к избирательной адсорбции из окружающей среды катионов Sb2+ или сульфид-ионов. Если реакция проводится в избытке иодида калия, то кристалл будет адсорбировать иодид-ионы; при избытке нитрата серебра микрокристалл адсорбирует ионы Sb2+. В результате этого микрокристалл приобретает отрицательный либо положительный заряд; ионы, сообщающие ему этот заряд, называются потенциалопределяющими, а сам заряженный кристалл – ядром мицеллы. Заряженное ядро притягивает из раствора ионы с противоположным зарядом – противоионы; на поверхности раздела фаз образуется двойной электрический слой. Некоторая часть противоионов адсорбируется на поверхности ядра, образуя т.н. адсорбционный слой противоионов; ядро вместе с адсорбированными на нем противоионами называют коллоидной частицей или гранулой. Остальные противоионы, число которых определяется, исходя из правила электронейтральности мицеллы, составляют диффузный слой противоионов; противоионы адсорбционного и диффузного слоев находятся в состоянии динамического равновесия адсорбции – десорбции.

15. Какой коллоидный агрегат называется мицеллой? Что такое гранула?

Коллоидные частицы, содержащиеся в воде, находятся в непрерывном и беспорядочном броуновском движении. Между ними действуют силы взаимного притяжения и отталкивания. Силы взаимного отталкивания объясняются тем, что однородные коллоидные частицы имеют электрические заряды одного знака. Наличие электрических зарядов объясняется следующими причинами. Каждая коллоидная частица обладает весьма значительной адсорбционной способностью, благодаря чему она адсорбирует из раствора ионы электролитов одного знака, которые распределяются равномерно по ее поверхности, образуя адсорбционный слой. Коллоидная частица вместе с адсорбционным слоем называется гранулой. Ввиду наличия у гранулы электрического заряда вокруг нее концентрируются ионы с зарядами противоположного знака (п рот и во и о н ы). Противоионы не связаны прочно с гранулой; они сохраняют способность к диффузии в окружающую жидкость, образуя вокруг гранулы диффузный слой, в котором концентрация противоиоиов уменьшается по мере удаления от гранулы. Гранула вместе с диффузным слоем называется мицеллой. При броуновском движении вместе с коллоидной частицей движется двойной электрический слой, состоящий из ионов адсорбционного слоя и части противоинов диффузного слоя, содержащихся в оболочке воды, окружающей частицу. Остальные противоионы, расположенные вокруг двойного электрического слоя, отрываются от движущей частицы. Благодаря этому последняя, потеряв часть противоионов, приобретает некоторый заряд, одинаковый по знаку с зарядом гранулы, но меньший по сравнению с ним по величине. Граница между двойным слоем и остальной частью диффузного слоя называется поверхностью скольжения коллоидной частицы в растворе.