- •1. Какое положение занимают коллоидные системы в общей системе дисперсных систем?
- •2. Что такое степень дисперсности? Как классифицируются дисперсные системы по размеру частиц дисперсной фазы?
- •3. Как классифицируются дисперсные системы по агрегатному состоянию дисперсной фазы и дисперсной среды? Приведите примеры медико-биологического профиля.
- •4. Объясните. Почему коллоидно-дисперсные и грубодисперсные системы являются термодинамически неустойчивыми
- •5. Какие условия необходимо соблюдать для получения устойчивых эмульсий? Каково биологическое значение эмульсий?
- •6. Охарактеризуйте молекулярно-кинетические свойства золей и сравните их с истинными растворами
- •7. Объясните причину возникновения конуса Тиндаля при падении луча света на золь
- •8. Объясните, почему золи рассеивают преимущественно коротковолновое излучение
- •9. Какими способами можно отличить золь от грубодисперсной системы? На каких свойствах основаны эти способы?
- •10. Приведите примеры практического использования электрофореза. Какое значение имеет для характеристики коллоидно-дисперсных систем дзета-потенциал? Каким образом его можно определить
- •11. Что называют коагуляцией? Каковы внешние признаки коагуляции? Укажите возможные продукты коагуляции золей
- •12. Что такое электрофорез и электроосмос? Как объясняются эти явления?
- •13. Почему при электродиализе используется только постоянный электрический ток?
- •14. Каково строение мицелл лиофобных золей? Покажите это на примере мицеллы золя сульфида сурьмы (го)?
- •15. Какой коллоидный агрегат называется мицеллой? Что такое гранула?
- •16. Напишите формулу мицеллы сульфата бария, полученного сливанием одинакового объема сильно разбавленного раствора хлорида бария и менее разбавленного раствора серной кислоты
- •17. Напишите формулу мицеллы золя бромида серебра, полученного при взаимодействии разбавленного раствора нитрата серебра с избытком бромида натрия. Какой заряд будет иметь гранула?
- •18. Как можно получить гидрозоли сульфата кальция с различным знаком заряда коллоидных частиц? Напишите схемы строения мицеллы золя для каждого случая
- •19. Потенциалолределяющими ионами золя бромида серебра оказались ионы серебра. Напишите схему строения мицеллы этого золя
- •20. Дайте общую характеристику явления адсорбции. Почему адсорбция является наиболее эффективным регулятором поверхностных свойств дисперсных систем?
- •21. Объясните принцип классификации веществ на поверхностно-активные и поверхностно-инактивные
- •23. Укажите наиболее существенные особенности адсорбции пав на границе раздела двух жидкостей
- •24. Укажите наиболее существенные особенности адсорбции пав на поверхности твердых тел
- •25. По какому признаку вещества относят к высокомолекулярным соединениям?
- •27. Что такое набухание? Какие стадии в нем различают?
- •28. По каким признакам растворы высокомолекулярных соединений сходны с коллоидным растворами?
- •29. Чем отличается денатурация от коацервации?
- •31. Что называется суспензией? Какой вид устойчивости для нее характерен?
- •32. Что представляют собой эмульсии? Как их классифицируют?
- •33. Какие дисперсные системы называют пенами?
- •34. Что такое аэрозоли. Какими основными свойствами они обладают?
8. Объясните, почему золи рассеивают преимущественно коротковолновое излучение
По размерам частиц промежуточное положение между суспензиями и истинными растворами занимают золи. Золи – высокодисперсные системы с частицами из твердого вещества, находящимися в броуновском движении. Чаще всего золями называют системы с жидкой дисперсионной средой. Золи – типичные коллоидные системы, которые наиболее ярко проявляют свойства, присущие веществу в высокодисперсном состоянии.
Методы исследования дисперсных систем (определение размера, формы и заряда частиц) основаны на изучении их особых свойств, обусловленных гетерогенностью и дисперсностью, в частности оптических. Коллоидные растворы обладают оптическими свойствами, отличающими их от настоящих растворов, – они поглощают и рассеивают проходящий через них свет.
Рассеяние света возможно, если размер коллоидной частицы меньше длины волны проходящего света и показатели преломления дисперсной фазы и дисперсионной среды различны. Размеры коллоидных частиц меньше длин волн видимой части спектра (примерно 0,1–0,2 длины волны света), и поглощенная световая энергия вновь испускается частицами в различных направлениях, что проявляется в рассеивании света. Интенсивность светорассеяния резко увеличивается с уменьшением длины световой волны.
Конус Тиндаля тем ярче, чем выше концентрация и больше размер частиц. Интенсивность светорассеяния усиливается при коротковолновом излучении и при значительном отличии показателей преломления дисперсной и дисперсионной фаз. С уменьшением диаметра частиц максимум поглощения смещается в коротковолновую часть спектра, и высокодисперсные системы рассеивают более короткие световые волны и поэтому имеют голубоватую окраску. На спектрах рассеяния света основаны методы определения размера и формы частиц.
9. Какими способами можно отличить золь от грубодисперсной системы? На каких свойствах основаны эти способы?
В области размеров коллоидных частиц (100 ммк– 1 ммк) степень дисперсности вещества (т. е. отношение поверхности к объему) огромна. В связи с этим для коллоидов особенно характерны все процессы, протекающие на поверхности раздела двух фаз, в частности, адсорбция.
1) Так как диаметр пор обычной фильтровальной бумаги составляет 10000–З000 ммк, сквозь нее легко проходят частицы не только всех коллоидных растворов, но и тонких взвесей. То же относится и к «уплотненным» фильтрам с порами диаметром до 1000 ммк. Стеклянные фильтры обычно имеют поры диаметром в интервале 100 000–10 000 ммк, специальные фарфоровые и глиняные – до 100 ммк. Последние уже полностью задерживают взвеси, но еще пропускают частицы коллоидных растворов. Частицы эти могут быть задержаны пленками некоторых веществ (например, коллодия), служащими для изготовления так называемых ультрафильтров. Наиболее плотные ультрафильтры имеют поры диаметром до 1 ммк и задерживают уже не только все коллоидные частицы, но и отдельные, особенно объемистые молекулы истинных растворов.
Так как по своим размерам коллоидные частицы лежат между частицами взвесей и молекулами, к получению вещества в коллоидном состоянии можно подойти с двух сторон: либо путем дробления более крупных частиц, либо, наоборот, путем образования агрегатов из отдельных молекул. Методы получения коллоидов по первому пути носят название дисперсионных, по второму – конденсационных. Простейшим по идее дисперсионным методом является механическое дробление исходного вещества. Таким путем при помощи специальных коллоидных мельниц могут быть получены частицы диаметром до 10 ммк.
Еще чаще применяются конденсационные методы, основанные на различных химических реакциях, ведущих к образованию практически нерастворимых в избранной среде веществ. Регулируя условия протекания процесса, можно добиться выделения этих веществ в виде коллоидных частиц тех или иных размеров.
По отношению к жидкой фазе, в которой они распределены, коллоидные частицы распадаются на две большие группы. Представители одной из них адсорбируют на своей поверхности молекулы вещества окружающей среды и образуют с ними более или менее прочные комплексы сольватного типа. Такие коллоиды называют лиофильными (в частном случае воды – гидрофильными). Каждая частица лиофильного коллоида окружена связанной с ней жидкой оболочкой, которая не вполне разрушается даже при слипании частиц друг с другом. Вследствие этого при образовании более крупных агрегатов в их состав включается и жидкая фаза.
Представители другой группы коллоидов не адсорбируют молекул жидкой фазы Подобные коллоиды носят название лиофобных (в частном случае воды–гидрофобных). В их золях отдельные частицы не окружены пленкой жидкой фазы, и последняя при образовании более крупных агрегатов в них не включается. Примером гидрофобного коллоида может служить сернистый мышьяк, примерами гидрофильных – кремневая кислота и окись железа.
Помимо вещества той среды, в которой они распределены, коллоидные частицы способны адсорбировать и другие присутствующие в жидкой фазе молекулы, а также – что особенно важно – ионы. В последнем случае они сами становятся электрически заряженными. Так как свойства поверхности у одинаковых коллоидных частиц одни и те же, все они заряжаются при этом одноименно: адсорбирующие преимущественно катионы – положительно (положительные коллоиды), адсорбирующие главным образом анионы – отрицательно (отрицательные коллоиды). Положительными при обычных условиях получения являются, в частности, гидрозоли окислов металлов, отрицательными – гидрозоли сернистых соединений, (а также кремневой кислоты).
Знак заряда коллоидных частиц может быть установлен на опыте, так как под действием постоянного электрического тока положительные коллоиды передвигаются к катоду, а отрицательные – к аноду. При изучении этого явления (называемого электрофорезом) исследуемый гидрозоль помещают в нижнюю часть снабженной кранами U–образной трубки (рис. 147), затем закрывают оба крана, промывают верхнюю часть прибора, заполняют ее водой и опускают в последнюю электроды. После открывания обоих кранов и включения постоянного тока в трубке начинает происходить электрофорез. Передвижение коллоидных частиц от одного полюса к другому особенно легко наблюдать в случае цветных золей непосредственно по изменению уровней окрашенного слоя жидкости в обоих коленах трубки.
