- •1. Какое положение занимают коллоидные системы в общей системе дисперсных систем?
- •2. Что такое степень дисперсности? Как классифицируются дисперсные системы по размеру частиц дисперсной фазы?
- •3. Как классифицируются дисперсные системы по агрегатному состоянию дисперсной фазы и дисперсной среды? Приведите примеры медико-биологического профиля.
- •4. Объясните. Почему коллоидно-дисперсные и грубодисперсные системы являются термодинамически неустойчивыми
- •5. Какие условия необходимо соблюдать для получения устойчивых эмульсий? Каково биологическое значение эмульсий?
- •6. Охарактеризуйте молекулярно-кинетические свойства золей и сравните их с истинными растворами
- •7. Объясните причину возникновения конуса Тиндаля при падении луча света на золь
- •8. Объясните, почему золи рассеивают преимущественно коротковолновое излучение
- •9. Какими способами можно отличить золь от грубодисперсной системы? На каких свойствах основаны эти способы?
- •10. Приведите примеры практического использования электрофореза. Какое значение имеет для характеристики коллоидно-дисперсных систем дзета-потенциал? Каким образом его можно определить
- •11. Что называют коагуляцией? Каковы внешние признаки коагуляции? Укажите возможные продукты коагуляции золей
- •12. Что такое электрофорез и электроосмос? Как объясняются эти явления?
- •13. Почему при электродиализе используется только постоянный электрический ток?
- •14. Каково строение мицелл лиофобных золей? Покажите это на примере мицеллы золя сульфида сурьмы (го)?
- •15. Какой коллоидный агрегат называется мицеллой? Что такое гранула?
- •16. Напишите формулу мицеллы сульфата бария, полученного сливанием одинакового объема сильно разбавленного раствора хлорида бария и менее разбавленного раствора серной кислоты
- •17. Напишите формулу мицеллы золя бромида серебра, полученного при взаимодействии разбавленного раствора нитрата серебра с избытком бромида натрия. Какой заряд будет иметь гранула?
- •18. Как можно получить гидрозоли сульфата кальция с различным знаком заряда коллоидных частиц? Напишите схемы строения мицеллы золя для каждого случая
- •19. Потенциалолределяющими ионами золя бромида серебра оказались ионы серебра. Напишите схему строения мицеллы этого золя
- •20. Дайте общую характеристику явления адсорбции. Почему адсорбция является наиболее эффективным регулятором поверхностных свойств дисперсных систем?
- •21. Объясните принцип классификации веществ на поверхностно-активные и поверхностно-инактивные
- •23. Укажите наиболее существенные особенности адсорбции пав на границе раздела двух жидкостей
- •24. Укажите наиболее существенные особенности адсорбции пав на поверхности твердых тел
- •25. По какому признаку вещества относят к высокомолекулярным соединениям?
- •27. Что такое набухание? Какие стадии в нем различают?
- •28. По каким признакам растворы высокомолекулярных соединений сходны с коллоидным растворами?
- •29. Чем отличается денатурация от коацервации?
- •31. Что называется суспензией? Какой вид устойчивости для нее характерен?
- •32. Что представляют собой эмульсии? Как их классифицируют?
- •33. Какие дисперсные системы называют пенами?
- •34. Что такое аэрозоли. Какими основными свойствами они обладают?
7. Объясните причину возникновения конуса Тиндаля при падении луча света на золь
Если коллоидные системы наблюдать в проходящем и боковом свете, то можно увидеть интересные явления: бесцветный золь в проходящем свете кажется прозрачным, а в боковом свете - мутным; луч света, проходя через золь, оставляет в нем светлую полосу. Это явление называется опалесценцией.
В 1869 г. Дж. Тиндаль установил, что если направить на золь пучок света, то внутри золя можно увидеть светящийся голубым светом конус. Стакан с золем должен быть затемнен, тогда конус виден особенно отчетливо. Схема опыта Тиндаля приведена на рис. 2.15.
При прохождении света через золь происходят следующие явления: поглощение (абсорбция) света, преломление света, отражение света, рассеяние света.
Явление опалесценции, конус Тиндаля - это следствие рассеяния света. Теорию этого явления разработал английский ученый Дж. У. Рэлей (1871 г.).
Если радиус частиц золя меньше длины полуволны падающего света (r < l/2), то луч света не отражается, а огибает частицу под различными углами. Это и является причиной рассеяния света.
Рэлей создал теорию этого явления, в первую очередь, для золей диэлектриков, не несущих на поверхности частиц заряда.
В общем виде уравнение Рэлея:
,
(2.2.102)
где I – интенсивность рассеянного света; I0 – интенсивность падающего света; А – постоянная.
При r < (l/20) уравнение Рэлея имеет вид
,
(2.2.103)
где n – частичная концентрация в дисперсной системе (число частиц в 1 см3); V – объем одной частицы; l – длина волны падающего света; n2, n1 – показатели преломления дисперсной фазы и дисперсионной среды.
Из уравнения Рэлея следует, что яркость опалесценции растет с уменьшением длины волны.
Голубое свечение обусловлено тем, что светорассеяние коротких волн (синих и фиолетовых) происходит интенсивнее, чем длинных (красных и желтых).
В проходящем свете относительное содержание лучей с короткой длиной волны будет уменьшаться, поэтому мутные среды, опалесцирующие голубым светом, в проходящем свете кажутся красноватыми или даже красными, если мутность достаточно сильна.
Интенсивность рассеянного света зависит от степени дисперсности. Наибольшее светорассеяние будет в коллоидных системах, меньше оно в грубодисперсных системах. В последних будет преобладать отражение, а не рассеяние света.
Для систем, содержащих частички металлов, проводящих электрический ток, все зависимости становятся гораздо сложнее. Яркость рассеянного света, на которую влияет длина волны, обычно проходит через максимум, характерный для данного типа частиц и определяется его индивидуальными оптическими постоянными; кроме того, этот максимум является функцией степени дисперсности системы.
Рис. 1. Зависимость коэффициента объемного рассеяния света от размера частиц белого пигмента.
1 – рутил, 2- анатаз, 3 – сульфид цинка.
На рис. 1 приведен пример зависимости коэффициента рассеяния света от размера частиц. Видно, что зависимость интенсивности рассеянного света от дисперсности некоторых пигментов экстремальны и существует такой размер частиц rmax, при котором рассеяние наибольшее. Интересно отметить, что, например, белый пигмент при r < rmax будет иметь голубоватый оттенок, а при r > rmax – желтоватый.
Следовательно, радиус частиц и их распределение по размерам определяют изменение оттенка или даже цвета пигмента в результате рассеяния различной части спектра. Поглощение света наряду с его рассеянием делает зависимость цвета дисперсии (в водной среде или в полимерной пленке) еще более сложной. Установлено, что максимум рассеяния света и размер частиц связаны уравнением
(2.2.104)
где l – длина волны падающего света; n1, n2 – коэффициенты преломления света дисперсионной средой и дисперсной фазой.
Используя это уравнение можно рассчитать необходимую степень дисперсности частиц пигмента, необходимую для максимального рассеяния света с заданной длиной волны l. Зависимость степени рассеяния света от размера частиц приводит к тому, что при диспергировании будет изменяться не только оттенок белого пигмента, но и кажущийся цвет окрашенного пигмента.
