- •Волновая и квантовая оптика
- •1. Основные законы оптики.
- •1. 1. Элементы геометрической оптики.
- •1. 2. Явление полного внутреннего отражения.
- •1. 3. Поглощение света.
- •1. 4. Дисперсия света.
- •1. 5. Отражение и пропускание света. Окраска тел в природе.
- •2. Интерференция световых волн.
- •2 . 1. Электромагнитная теория света.
- •2. 2. Принцип Гюйгенса.
- •2. 3. Расчет интерференционной картины.
- •2 . 4. Интерференция света в тонких пленках.
- •3. Дифракция света.
- •3. 1. Принцип Гюйгенса-Френеля.
- •3 . 2. Метод зон Френеля.
- •3. 3. Дифракция Френеля на круглом отверстии и диске.
- •3. 4. Дифракция Фраунгофера на прямоугольной щели.
- •3. 5. Дифракция Фраунгофера на дифракционной решетке.
- •3. 6. Дисперсия и разрешающая сила спектрального прибора.
- •4. Поляризация света.
- •4. 1. Естественный и поляризованный свет.
- •4. 2. Поляризация света при отражении и преломлениина границе раздела двух диэлектрических сред. Закон Брюстера.
- •4. 3. Поляризация света при двойном лучепреломлении.
- •4. 4. Анализ плоскополяризованного света. Закон Малюса.
- •5. Тепловое излучение тел.
- •5. 1. Характеристики теплового излучения. @
- •5. 2. Закон Кирхгофа.
- •5. 3. Законы Стефана-Больцмана и Вина.
- •5. 4. Квантовый характер излучения.
- •5. 5. Пирометрия и пирометры.
- •6. Фотоэлектрический эффект.
- •А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:
- •Основные положения квантовой механики. Противоречия классической физики: особенности строения атома, линейчатые спектры атомов, дифракция электронов, дифракция нейтронов.@
- •Гипотеза Луи-де-Бройля о корпускулярно-волновом дуализме свойств микрочастиц.
- •Физика атома. Электрон в атоме водорода. Энергетические уровни. Квантовые числа и их физический смысл.
- •Спин электрона.
- •Состав ядра. Характеристики ядра.@
- •Радиоактивность. Закон радиоактивного распада. Альфа, бета, гамма – излучения.@
- •Модели ядра: капельная, оболочная. Ядерные силы.
- •Энергия связи ядра. Дефект массы.
Энергия связи ядра. Дефект массы.
Вследствие наличия сильного ядерного взаимодействия, удерживающего нуклоны в ядре, для разделения ядра на отдельные нуклоны необходимо совершить работу и затратить энергию. Эту энергию, необходимую для разделения ядра на составляющие его нуклоны, называют энергией связи ядра Есв. Согласно закону сохранения энергии для энергии связи можно записать
ЕЯ + Есв =ЕNi , (3.1)
где ЕЯ - энергия неподвижного ядра, ЕNi – суммарная энергия отдельных неподвижных нуклонов. Но, согласно Эйнштейну, известно, что энергия покоя любой частицы связана с его массой как Е= mc2, поэтому можно записать
Есв = ЕNi - ЕЯ = Σmic2 – mЯc2 = (Zmp + Nmn – mЯ)) c2 , (3.2)
где Σmi – сумма масс покоящихся нуклонов, mЯ – масса ядра в покое. Так как энергия связи положительна, то получаем соответственно
Σ mi - mЯ m >0, (3.3)
полученное соотношение показывает, что масса покоя ядра меньше чем суммарная масса покоя содержащихся в нем нуклонов. Экспериментальные измерения масс атомных ядер, выполненные с большой точностью, показывают, что действительно масса ядра всегда меньше суммы масс составляющих его нуклонов. Величину, равную разности масс нуклонов и массы атомного ядра m называют дефектом массы.
