- •Волновая и квантовая оптика
- •1. Основные законы оптики.
- •1. 1. Элементы геометрической оптики.
- •1. 2. Явление полного внутреннего отражения.
- •1. 3. Поглощение света.
- •1. 4. Дисперсия света.
- •1. 5. Отражение и пропускание света. Окраска тел в природе.
- •2. Интерференция световых волн.
- •2 . 1. Электромагнитная теория света.
- •2. 2. Принцип Гюйгенса.
- •2. 3. Расчет интерференционной картины.
- •2 . 4. Интерференция света в тонких пленках.
- •3. Дифракция света.
- •3. 1. Принцип Гюйгенса-Френеля.
- •3 . 2. Метод зон Френеля.
- •3. 3. Дифракция Френеля на круглом отверстии и диске.
- •3. 4. Дифракция Фраунгофера на прямоугольной щели.
- •3. 5. Дифракция Фраунгофера на дифракционной решетке.
- •3. 6. Дисперсия и разрешающая сила спектрального прибора.
- •4. Поляризация света.
- •4. 1. Естественный и поляризованный свет.
- •4. 2. Поляризация света при отражении и преломлениина границе раздела двух диэлектрических сред. Закон Брюстера.
- •4. 3. Поляризация света при двойном лучепреломлении.
- •4. 4. Анализ плоскополяризованного света. Закон Малюса.
- •5. Тепловое излучение тел.
- •5. 1. Характеристики теплового излучения. @
- •5. 2. Закон Кирхгофа.
- •5. 3. Законы Стефана-Больцмана и Вина.
- •5. 4. Квантовый характер излучения.
- •5. 5. Пирометрия и пирометры.
- •6. Фотоэлектрический эффект.
- •А.Г.Столетов два года исследовал новое явление и установил следующие закономерности внешнего фотоэффекта:
- •Основные положения квантовой механики. Противоречия классической физики: особенности строения атома, линейчатые спектры атомов, дифракция электронов, дифракция нейтронов.@
- •Гипотеза Луи-де-Бройля о корпускулярно-волновом дуализме свойств микрочастиц.
- •Физика атома. Электрон в атоме водорода. Энергетические уровни. Квантовые числа и их физический смысл.
- •Спин электрона.
- •Состав ядра. Характеристики ядра.@
- •Радиоактивность. Закон радиоактивного распада. Альфа, бета, гамма – излучения.@
- •Модели ядра: капельная, оболочная. Ядерные силы.
- •Энергия связи ядра. Дефект массы.
4. 3. Поляризация света при двойном лучепреломлении.
Действие ряда поляризаторов основано на поляризации света при прохождении его через оптически анизотропные среды (т.е. среды, имеющие различные оптические свойства в различных направлениях). Все прозрачные кристаллы оптически анизотропны. Исключением являются кристаллы, имеющие кубическую кристаллическую решетку (например, соль NaCl). При прохождении света через оптически анизотропные кристаллы наблюдается явление двойного лучепреломления, которое состоит в том, что упавший на кристалл луч разделяется внутри кристалла на два луча, распространяющиеся с различными скоростями и в различных направлениях. Это явление впервые было обнаружено датским ученым Э. Бартолином в 1669 г. для исландского шпата.
В зависимости от типа симметрии оптически анизотропные кристаллы бывают одноосные либо двуосные, т.е. имеют одну или две оптические оси. Оптической осью называется такое направление в кристалле, вдоль которого распространяющийся свет не испытывает двойного лучепреломления. Важно отметить, что любая прямая параллельная данному направлению, также является оптической осью кристалла. Примером одноосного кристалла (рис. 4.9) является исландский шпат (диагональ кристалла ОО' совпадает с оптической осью), а также кварц, турмалин, апатит и другие. К двуосным кристаллам относятся гипс, слюда, топаз.
В
одноосных кристаллах (рис. 4.9 а) один из
преломленных лучей, образующихся при
двойном лучепреломлении, лежит в
плоскости падения и подчиняется закону
преломления, поэтому его назвали
обыкновенным
лучом и
обозначают буквой "о".
Скорость
обыкновенного луча υо
численно одинакова по всем направлениям:
υо
= c/nо,
где nо
= const-
показатель преломления кристалла для
обыкновенного луча. Второй луч называют
необыкновенным
и обозначают
буквой "е".
Он не лежит в плоскости падения и не
подчиняется закону преломления.
Соответственно скорость
необыкновенного луча
υе
= c/nе,
где nе
- показатель
преломления кристалла для необыкновенного
луча. Значения nе
и υе
зависят от направления распространения
необыкновенного луча по отношению
к оптической оси кристалла. Для луча,
распространяющегося вдоль оптической
оси показатели преломления обыкновенного
и необыкновенного лучей равны nе
= nо
и υе
= υо.
Значение nе
наиболее
сильно отличается от nо
для направления, перпендикулярного
оптической оси. Все эти различия между
обыкновенным и необыкновенным лучами
имеют место только внутри кристалла.
На выходе из кристалла оба луча
распространяются с одинаковой
скоростью. В двуосных кристаллах оба
преломленных луча ведут себя как
необыкновенные.
Исследование обыкновенного и необыкновенного лучей показывает, что оба луча на выходе из кристалла полностью поляризованы. Вектор Е обыкновенного луча колеблется перпендикулярно главной плоскости (на рис. 4.9 эти колебания обозначены точками), а вектор Е необыкновенного луча колеблется в главной плоскости (на рис. 4.9 эти колебания показаны стрелками). Главной плоскостью или главным сечением одноосного кристалла называется плоскость, проходящая через падающий луч и пересекающую его оптическую ось (рис. 4.9 б).
