
- •1. Основные положения мкт. Доказательство существования молекул. Размеры и масса молекул.
- •2. Строение газообразных, жидких и твердых тел
- •3. Опыт Штерна. Распределение молекул по скоростям
- •4. Идеальный газ. Изопроцессы.
- •Уравнение состояния идеального газа Менделеева - Клапейрона
- •5. Абсолютная температурная шкала. Абсолютный нуль температуры.
- •6. Основное уравнение молекулярно-кинетической теории идеального газа
- •7. Внутренняя энергия. Внутренняя энергия идеального газа
- •Количество теплоты
- •8. Первый закон термодинамики и его применение к различным процессам
- •1. Изобарный процесс. Работа газа.
- •2. Изохорный процесс. Теорема Майера
- •3. Изотермический процесс
- •4. Адиабатный процесс
- •9. Принцип действия тепловых двигателей. Кпд теплового двигателя
- •10. Испарение и конденсация. Насыщенные и ненасыщенные пары. Парообразование. Конденсация. Испарение.
- •11. Кипение. Удельная теплота парообразования.
- •12. Влажность воздуха
- •13. Кристаллические и аморфные тела. Свойства твердых тел
- •14. Сила упругости. Закон Гука. Виды деформаций
- •Диаграмма состояния вещества.
- •15. Необратимость тепловых процессов. Второй закон термодинамики и его статистический смысл
- •Механика
- •1. Аналитическое описание равноускоренного движения. Вывод формул для перемещения при равноускоренном движении
- •2. Относительность механического движения. Вывод формулы закона сложения скоростей. Относительная скорость
- •3. Движение тела, брошенного вертикально вверх, вертикально вниз. Вывод формулы для времени движения тела брошенного вертикально с высоты h.
- •4. Движение тела брошенного под углом к горизонту. Вывод формул дальности полета, максимальной высоты подъема, времени движения
- •5. Движение тела, брошенного горизонтально. Вывод формулы траектории движения, вывод формул для времени падения и дальности полета
- •6. Движение тела по окружности с постоянной по модулю скоростью. Угловая скорость, угол поворота, период обращения, частота. Связь между угловой и линейной скоростью.
- •7. Центростремительное ускорение (вывод формулы).
- •9. Закон сохранения импульса (вывод, границы применения)
- •10. Гидростатическое давление (вывод формулы). Сила Архимеда (вывод формулы). Условие плавания тел.
- •11. Механическая работа. Кинетическая энергия. Доказательство теоремы об изменении кинетической энергии
- •12. Работа силы тяжести и силы упругости, потенциальная энергия деформированной пружины (вывод формулы) и тела поднятого над Землей.
- •13. Условия равновесия тел. Момент силы
- •14. Силы сопротивления, сила трения покоя, сила трения скольжения
- •15. Закон сохранения механической энергии (границы применения), работа сил сопротивления.
14. Силы сопротивления, сила трения покоя, сила трения скольжения
Трение – один из видов взаимодействия тел. Оно возникает при соприкосновении двух тел. Трение, как и все другие виды взаимодействия, подчиняется третьему закону Ньютона: если на одно из тел действует сила трения, то такая же по модулю, но направленная в противоположную сторону сила действует и на второе тело. Силы трения, как и упругие силы, имеют электромагнитную природу. Они возникают вследствие взаимодействия между атомами и молекулами соприкасающихся тел.
Силами сухого трения называют силы, возникающие при соприкосновении двух твердых тел при отсутствии между ними жидкой или газообразной прослойки. Они всегда направлены по касательной к соприкасающимся поверхностям.
Сухое трение, возникающее при относительном покое тел, называют трением покоя. Сила трения покоя всегда равна по величине внешней силе и направлена в противоположную сторону. Сила трения покоя не может превышать некоторого максимального значения (Fтр)max. Если внешняя сила больше (Fтр)max, возникает относительное проскальзывание. Силу трения в этом случае называют силой трения скольжения. Она всегда направлена в сторону, противоположную направлению движения и, вообще говоря, зависит от относительной скорости тел. Однако, во многих случаях приближенно силу трения скольжения можно считать независящей от величины относительной скорости тел и равной максимальной силе трения покоя. Эта модель силы сухого трения применяется при решении многих простых физических задач. Опыт показывает, что сила трения скольжения пропорциональна силе нормального давления тела на опору, а следовательно, и силе реакции опоры Fтр = (Fтр)max = μN
Коэффициент пропорциональности μ называют коэффициентом трения скольжения.
Коэффициент трения μ – величина безразмерная. Обычно коэффициент трения меньше единицы. Он зависит от материалов соприкасающихся тел и от качества обработки поверхностей. При скольжении сила трения направлена по касательной к соприкасающимся поверхностям в сторону, противоположную относительной скорости.
При движении твердого тела в жидкости или газе возникает силa вязкого трения. Сила вязкого трения значительно меньше силы сухого трения. Она также направлена в сторону, противоположную относительной скорости тела. При вязком трении нет трения покоя.
Сила вязкого трения сильно зависит от скорости тела. При достаточно малых скоростях Fтр ~ υ, при больших скоростях Fтр ~ υ2. При этом коэффициенты пропорциональности в этих соотношениях зависят от формы тела.
Силы трения возникают и при качении тела. Однако силы трения качения обычно достаточно малы. При решении простых задач этими силами пренебрегают.
15. Закон сохранения механической энергии (границы применения), работа сил сопротивления.
Если тела, составляющие замкнутую механическую систему, взаимодействуют между собой только посредством сил тяготения и упругости, то работа этих сил равна изменению потенциальной энергии тел, взятому с противоположным знаком: A = –(Eр2 – Eр1)
По теореме о кинетической энергии эта работа равна изменению кинетической энергии тел: A = Eк2 – Eк1. Следовательно Ek1 + Ep1 = Ek2 + Ep2
Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной. Это утверждение выражает закон сохранения энергии в механических процессах. Он является следствием законов Ньютона. Сумму E = Ek + Ep называют полной механической энергией. Закон сохранения механической энергии выполняется только тогда, когда тела в замкнутой системе взаимодействуют между собой консервативными силами, то есть силами, для которых можно ввести понятие потенциальной энергии.
Очень важно отметить, что закон сохранения механической энергии позволил получить связь между координатами и скоростями тела в двух разных точках траектории без анализа закона движения тела во всех промежуточных точках. Применение закона сохранения механической энергии может в значительной степени упростить решение многих задач.
В реальных условиях практически всегда на движущиеся тела наряду с силами тяготения, силами упругости и другими консервативными силами действуют силы трения или силы сопротивления среды.
Сила трения не является консервативной. Работа силы трения зависит от длины пути.
Если между телами, составляющими замкнутую систему, действуют силы трения, то механическая энергия не сохраняется. Часть механической энергии превращается во внутреннюю энергию тел (нагревание).
При любых физических взаимодействиях энергия не возникает и не исчезает. Она лишь превращается из одной формы в другую.
Этот экспериментально установленный факт выражает фундаментальный закон природы – закон сохранения и превращения энергии.
Одним из следствий закона сохранения и превращения энергии является утверждение о невозможности создания «вечного двигателя» (perpetuum mobile) – машины, которая могла бы неопределенно долго совершать работу, не расходуя при этом энергии.