
- •1. Основные положения мкт. Доказательство существования молекул. Размеры и масса молекул.
- •2. Строение газообразных, жидких и твердых тел
- •3. Опыт Штерна. Распределение молекул по скоростям
- •4. Идеальный газ. Изопроцессы.
- •Уравнение состояния идеального газа Менделеева - Клапейрона
- •5. Абсолютная температурная шкала. Абсолютный нуль температуры.
- •6. Основное уравнение молекулярно-кинетической теории идеального газа
- •7. Внутренняя энергия. Внутренняя энергия идеального газа
- •Количество теплоты
- •8. Первый закон термодинамики и его применение к различным процессам
- •1. Изобарный процесс. Работа газа.
- •2. Изохорный процесс. Теорема Майера
- •3. Изотермический процесс
- •4. Адиабатный процесс
- •9. Принцип действия тепловых двигателей. Кпд теплового двигателя
- •10. Испарение и конденсация. Насыщенные и ненасыщенные пары. Парообразование. Конденсация. Испарение.
- •11. Кипение. Удельная теплота парообразования.
- •12. Влажность воздуха
- •13. Кристаллические и аморфные тела. Свойства твердых тел
- •14. Сила упругости. Закон Гука. Виды деформаций
- •Диаграмма состояния вещества.
- •15. Необратимость тепловых процессов. Второй закон термодинамики и его статистический смысл
- •Механика
- •1. Аналитическое описание равноускоренного движения. Вывод формул для перемещения при равноускоренном движении
- •2. Относительность механического движения. Вывод формулы закона сложения скоростей. Относительная скорость
- •3. Движение тела, брошенного вертикально вверх, вертикально вниз. Вывод формулы для времени движения тела брошенного вертикально с высоты h.
- •4. Движение тела брошенного под углом к горизонту. Вывод формул дальности полета, максимальной высоты подъема, времени движения
- •5. Движение тела, брошенного горизонтально. Вывод формулы траектории движения, вывод формул для времени падения и дальности полета
- •6. Движение тела по окружности с постоянной по модулю скоростью. Угловая скорость, угол поворота, период обращения, частота. Связь между угловой и линейной скоростью.
- •7. Центростремительное ускорение (вывод формулы).
- •9. Закон сохранения импульса (вывод, границы применения)
- •10. Гидростатическое давление (вывод формулы). Сила Архимеда (вывод формулы). Условие плавания тел.
- •11. Механическая работа. Кинетическая энергия. Доказательство теоремы об изменении кинетической энергии
- •12. Работа силы тяжести и силы упругости, потенциальная энергия деформированной пружины (вывод формулы) и тела поднятого над Землей.
- •13. Условия равновесия тел. Момент силы
- •14. Силы сопротивления, сила трения покоя, сила трения скольжения
- •15. Закон сохранения механической энергии (границы применения), работа сил сопротивления.
10. Гидростатическое давление (вывод формулы). Сила Архимеда (вывод формулы). Условие плавания тел.
Основным отличием жидкостей от твердых (упругих) тел является способность легко изменять свою форму. Части жидкости могут свободно сдвигаться, скользя друг относительно друга. Поэтому жидкость принимает форму сосуда, в который она налита. В жидкость, как и в газообразную среду, можно погружать твердые тела. В отличие от газов жидкости практически несжимаемы.
На тело, погруженное в жидкость или газ, действуют силы, распределенные по поверхности тела. Для описания таких распределенных сил вводится новая физическая величина – давление.
Давление определяется как
отношение модуля силы
действующей перпендикулярно
поверхности, к площади S этой
поверхности:
.
В системе СИ давление
измеряется в паскалях
(Па): 1 Па = 1 Н/м2.
Часто используются
внесистемные единицы: нормальная
атмосфера (атм) и миллиметр
ртутного столба (мм Hg): 1 атм = 101325 Па = 760 мм Hg
Ф
ранцузский
ученый Б. Паскаль в
середине XVII века эмпирически установил
закон, названный законом
Паскаля: Давление
в жидкости или газе передается во всех
направлениях одинаково и не зависит от
ориентации площадки, на которую оно
действует.
Для иллюстрации закона Паскаля на рис. изображена небольшая прямоугольная призма, погруженная в жидкость. Если предположить, что плотность материала призмы равна плотности жидкости, то призма должна находиться в жидкости в состоянии безразличного равновесия. Это означает, что силы давления, действующие на грани призмы, должны быть уравновешены. Это произойдет только в том случае, если давления, т. е. силы, действующие на единицу площади поверхности каждой грани, одинаковы: p1 = p2 = p3 = p.
Давление жидкости на дно
или боковые стенки сосуда зависит от
высоты столба жидкости. Сила давления
на дно цилиндрического сосуда высоты h и
площади основания S равна
весу столба жидкости mg,
где m = ρghS –
масса жидкости в сосуде, ρ –
плотность жидкости. Следовательно
.
Такое же давление на
глубине h в
соответствии с законом Паскаля жидкость
оказывает и на боковые стенки сосуда.
Давление столба жидкости ρgh
называют гидростатическим
давлением.
Если жидкость находится в цилиндре под поршнем, то действуя на поршень некоторой внешней силой можно создавать в жидкости дополнительное давление p0 = F / S, где S – площадь поршня.
Таким образом, полное
давление в жидкости на глубине h можно
записать в виде:
И
з-за
разности давлений в жидкости на разных
уровнях возникает выталкивающая или архимедова сила
.
Рис. поясняет появление архимедовой силы. В жидкость погружено тело в виде прямоугольного параллелепипеда высотой h и площадью основания S. Разность давлений на нижнюю и верхнюю грани есть: Δp = p2 – p1 = ρgh. Поэтому выталкивающая сила будет направлена вверх, и ее модуль равен FА = F2 – F1 = SΔp = ρgSh = ρgV, где V – объем вытесненной телом жидкости, а ρV – ее масса. Архимедова сила, действующая на погруженное в жидкость (или газ) тело, равна весу жидкости (или газа), вытесненной телом. Это утверждение, называемое законом Архимеда, справедливо для тел любой формы.
Из закона Архимеда вытекает, что если средняя плотность тела ρт больше плотности жидкости (или газа) ρ, тело будет опускаться на дно. Если же ρт < ρ, тело будет плавать на поверхности жидкости. Объем погруженной части тела будет таков, что вес вытесненной жидкости равен весу тела. Для подъема воздушного шара в воздухе его вес должен быть меньше веса вытесненного воздуха. Поэтому воздушные шары заполняют легкими газами (водородом, гелием) или нагретым воздухом.