
- •1. Предмет и содержание кинематики. Основные понятия и задачи кинематики.
- •2. Способы задания движения точки.
- •3. Определение скорости и ускорения точки при векторном способе задания движения.
- •4. Определение скорости и ускорения точки при координатном способе задания движения.
- •5. Определение скорости и ускорения точки при естественном способе задания движения.
- •6. Поступательное движение твердого тела. Закон движения.
- •7. Вращательное движение твердого тела вокруг неподвижный оси. Угловая скорость и угловое ускорение.
- •8. Определение скорости и ускорения точек при вращательном движении тела.
- •9. Плоско-параллельное движение твердого тела. Разложение плоскопараллельного движения тела. Закон движения.
- •10. Определение скоростей точек тела при плоскопараллельном движении. Теорема о проекциях скоростей двух точек тела на ось.
- •11. Мгновенный центр скоростей. Определение скоростей точек тела с помощью мгновенного центра скоростей.
- •12. Частные случаи определения мгновенного центра скоростей.
- •13. Определение ускорения произвольной точки плоской фигуры. Теорема о сложении ускорений при плоском движении тела.
- •14. Теорема о сложении скоростей при плоском движении тела.
- •15. Сложное движение точки. Абсолютное, переносное и относительное движение точки.
- •16. Теорема о сложении скоростей при сложном движении точки.
- •17. Теорема о сложении ускорений при сложном движении точки.
- •18. Ускорение Кориолиса. Случаи равенства нулю ускорения Кориолиса.
- •19. Сферическое движение твердого тела.
- •20. Мгновенная ось вращения. Определение скорости точки при сферическом движении тела.
- •21. Определение ускорения точки при сферическом движении твердого тела.
- •22. Статика, предмет и задачи статики. Основные понятия и определения статики.
- •23. Аксиомы статики.
- •24. Связи и реакции связей. Аксиома связей.
- •25. Проекция силы на ось. Сложение сил.
- •26. Сходящаяся система сил. Условия равновесия.
- •27. Алгебраический момент силы относительно центра. Момент силы относительно оси.
- •28. Вектор момента силы относительно центра.
- •29. Момент силы относительно оси. Случаи равенства нулю момента силы относительно оси.
- •30. Теорема о моменте равнодействующей (теорема Вариньона).
- •31. Пара сил. Момент пары сил.
- •32. Теоремы об эквивалентности и о сложении пар сил.
- •33. Лемма о параллельном переносе силы.
- •34. Основная теорема статики.
- •35. Плоская произвольная система сил. Уравнения равновесия в трех формах.
- •36. Пространственная система сил. Приведение произвольной пространственной системы сил к простейшему виду.
- •3.4. Условия равновесия пространственной системы сил
- •3.5. Теорема Вариньона
- •37. Статически определимые и статически неопределимы системы тел.
- •38. Равновесие системы тел.
- •39. Пространственная система сил. Уравнения равновесия произвольной пространственной системы сил.
- •41. Центр тяжести твердого тела.
- •42. Способы определения центра тяжести.
- •43. Центр тяжести линии, плоской фигуры и объема.
- •44. Трение. Законы трения. Угол и конус трения.
19. Сферическое движение твердого тела.
20. Мгновенная ось вращения. Определение скорости точки при сферическом движении тела.
21. Определение ускорения точки при сферическом движении твердого тела.
(3 вопроса в одном ответе!!!)
Сферическим называют движение тела относительно некоторой неподвижной точки. Называют его так потому, что все точки тела движутся по поверхностям сфер, радиусы которых определяются расстояниями точек до неподвижной точки. Чисто сферическое движение в механике встречается не так уж часто. Такое движение совершают конические барабаны специальных мельниц, конические шестерни в дифференциальных передачах, знакомые всем с детства волчки. Более часто сферическое движение является составной частью сложного движения тела. Общий случай движения твердого тела рассматривается как совокупность поступательного и сферического движений.
Неподвижная точка тела при его сферическом движении может быть вполне осязаемой, как у волчка, а может быть чисто геометрической, как у усеченного конуса при его качении по плоскости. В гироскопах - вращающихся с очень большой угловой скоростью телах вращения, применяемых в системах автопилотов самолетов и кораблей, неподвижная относительно самолета точка организуется искусственно с помощью специальной конструкции для крепления оси вращения гироскопа.
Впервые описал движение тела относительно неподвижной точки Леонард Эйлер. Он показал, что для определения положения связанной с телом системы координатных осей относительно неподвижной системы координат необходимо задать всего три зависимости: как изменяются с течением времени три угла, которые в механике и названы углами Эйлера.
Это углы прецессии, нутации и собственного вращения тела.
22. Статика, предмет и задачи статики. Основные понятия и определения статики.
Статикой называется раздел механики, в котором излагается общее учение о силах и изучается условия равновесия материальных тел, находящихся под действием сил.
Предметом статистики является исследование общественных явлений, динамики и направления их развития. При помощи статистических показателей статистика устанавливает количественную сторону общественного явления, наблюдает закономерности перехода количества в качество на примере данного общественного явления. На основании предоставленных наблюдений статистика производит анализ полученных данных в конкретных условиях места и времени.
Задачей всех отраслевых статистик является разработка статистических показателей соответствующих отраслей.
Твердое тело. В статике и вообще в теоретической механике все тела считаются абсолютно твердыми. То есть предполагается, что эти тела не деформируются, не изменяют свою форму и объем, какое бы действие на них не было оказано.
Исследованием движения нетвердых тел – упругих, пластичных, жидких, газообразных, занимаются другие науки (сопротивление материалов, теория упругости, гидродинамика и т.д.).
Под равновесием будем понимать состояния покоя тела по отношению к другим материальным телам.
Основные понятия:
1. Величина, являющаяся количественной мерой механического взаимодействия материальных тел, называется в механике силой.
Сила является величиной векторной.
Ее действие на тело определяется: 1) численной величиной или модулем силы, 2) направлением силы, 3) точкой приложения силы (рис.9).
Рис.9
Прямая DE, вдоль которой направлена сила, называется линией действия силы.
В тексте вектор силы
обозначается латинскими буквами
,
,
и
др., с черточками над ними. Если черточки
нет, значит у силы известна только ее
численная величина - модуль.
Рис.
1.2.
2. Совокупность сил, действующих на какое-нибудь твердое тело, будем называть системой сил.
3. Тело, не скрепленное с другими телами, которому из данного положения можно сообщить любое перемещение в пространстве, называется свободным.
4. Если одну систему сил, действующих на свободное твердое тело, можно заменить другой системой, не изменяя при этом состояния покоя или движения, в котором находится тело, то такие две системы сил называются эквивалентными.
5. Система сил, под действием которой свободное твердое тело может находиться в покое, называется уравновешенной или эквивалентной нулю.
6. Если данная система сил эквивалентна одной силе, то эта сила называется равнодействующей данной системы сил. Таким образом, равнодействующая - это сила, которая одна заменяет действие данной системы сил на твердое тело.
7. Сила, равная равнодействующей по модулю, прямо противоположная ей по направлению и действующая вдоль той же прямой, называется уравновешивающей силой.
8. Силы, действующие на твердое тело, можно разделить на внешние и внутренние. Внешними называются силы, действующие на частицы данного тела со стороны других материальных тел. Внутренними называются силы, с которыми частицы данного тела действуют друг на друга.
9. Сила, приложенная к телу в какой-нибудь одной его точке, называется сосредоточенной. Силы, действующие на все точки данного объема или данной части поверхности тела, называются распределенными.
Понятие о сосредоточенной силе является условным, так как практически приложить силу к телу в одной точке нельзя. Силы, которые мы в механике рассматриваем как сосредоточенные, представляют собою по существу равнодействующие некоторых систем распределенных сил.
В частности, обычно рассматриваемая в механике сила тяжести, действующая на данное твердое тело, представляет собою равнодействующую сил тяжести его частиц. Линия действия этой равнодействующей проходит через точку, называемую центром тяжести тела.