
- •Введение
- •Классификация загрязненности водных объектов
- •Классификация загрязненности водных объектов по химическим показателям
- •1. Загрязняющие факторы водных источников
- •Химическое загрязнение
- •Неорганическое загрязнение
- •1.1.2. Органическое загрязнение
- •1.1.3. Поверхностно-активные вещества
- •1.1.4. Канцерогенные вещества
- •1.1.5. Нефтепродукты
- •1.1.6. Пестициды
- •1.2. Физическое загрязнение
- •2. Самоочищение водоемов
- •3. Основные технологические процессы обработки воды
- •3.1. Осветление воды
- •3.2. Обесцвечивание и дегазация воды
- •3.3. Обезжелезивание воды
- •3.4. Умягчение воды
- •Характеристика способов умягчения воды и условия их применения
- •3.5. Обессоливание воды
- •3.6. Фторирование питьевой воды
- •3.7. Обеззараживание воды
- •3.8. Механизм очистки воды коагулянтами
- •4. Состав расчетной работы и порядок расчета
- •5. Способы обработки воды и основные технологические схемы
- •5.1. Основные технологические схемы обработки воды
- •5.2. Выбор технологической схемы очистки воды и состава сооружений
- •Технологические схемы осветления и обесцвечивания воды
- •5.3. Высотное расположение сооружений на станции водоочистки
- •6. Определение производительности станции очистки воды
- •7. Реагентное хозяйство
- •7.1. Расчетные дозы реагентов
- •Оптимальные дозы реагентов
- •7.2. Расчет растворных, расходных баков,
- •7.3. Выбор воздуходувки, дозаторов и складского помещения
- •Марка поплавковых дозаторов
- •7.4. Обеззараживание и фторирование воды
- •8. Расчет смесителей и камер хлопьеобразования
- •8.1. Расчет вихревого смесителя гидравлического типа
- •Стандартные диаметры стальных трубопроводов
- •Объем пирамидальной (конической) части смесителя, м3:
- •Полная высота смесителя, м:
- •8.2. Расчет дырчатого смесителя
- •8.3. Перегородчатые смесители
- •8.4. Камеры хлопьеобразования
- •8.5. Расчет перегородчатой камеры хлопьеобразования
- •8.6. Расчет вихревой (вертикальной) камеры хлопьеобразования
- •8.7. Расчет камеры хлопьеобразования со взвешенным осадком
- •8.8. Расчет гидравлической камеры хлопьеобразования водоворотного типа
- •9. Осветлитель со взвешенным осадком
- •Скорость восходящего потока воды и коэффициент распределения
- •Размеры желобов в осветлителях с максимальными расходами воды, см
- •Общая высота зоны взвешенного осадка, м:
- •10. Отстойники
- •10.1. Расчет горизонтальных отстойников
- •10.2. Расчет вертикальных отстойников
- •10.3. Расчёт радиального отстойника
- •10.4. Пример теоретического расчета радиальных отстойников
- •Размеры сгустителей
- •11. Фильтрование воды
- •Контактный осветлитель
- •Характеристики микрофильтров и барабанных сеток
- •11.2. Скорый фильтр
- •11.3. Разновидности фильтрования воды в природе и технологиях осветления
- •11.4. Автоматическая установка комплексной очистки воды (Дельта-фильтр)
- •Водоочистная станция «Струя»
- •1. Блочная установка «Влага» полной заводской готовности производительностью 1600, 3200 и 5000 м3/сут
- •2. Установка «Струя-м» для очистки поверхностных и подземных вод
- •12. Станции обезжелезивания воды
- •Методы обезжелезивания воды
- •Окислительное обезжелезивание
- •Аэрация
- •Окисление двухвалентного железа с добавлением сильных окислителей
- •Каталитическое окисление с фильтрацией
- •Ионообменный метод удаления железа
- •Обезжелезивание мембранными методами
- •Биологическое обезжелезивание
- •13. Безреагентный медленный фильтр
- •13.1. Фильтр амф-ними
- •13.2. Методика расчета медленного фильтра
- •Библиографический список
- •Оглавление
- •400002, Волгоград, ул. Институтская, 8
1.1.6. Пестициды
Расширенное производство (без очистных сооружений) и применение ядохимикатов на полях приводят к сильному загрязнению водоемов вредными соединениями. Загрязнение водной среды происходит в результате прямого внесения ядохимикатов при обработке водоемов для борьбы с вредителями, поступления в водоемы воды, стекающей с поверхности обработанных сельскохозяйственных угодий, при сбросе в водоемы отходов предприятий-производителей, а также в результате потерь при транспортировке, хранении и, частично, с атмосферными осадками.
Наряду с ядохимикатами сельскохозяйственные стоки содержат значительное количество остатков удобрений (азота, фосфора, калия), вносимых на поля. Кроме того, большие количества органических соединений азота и фосфора попадают со стоками от животноводческих ферм, а также с канализационными стоками. Повышение концентрации питательных веществ в почве приводит к нарушению биологического равновесия в водоеме.
Вначале в таком водоеме резко увеличивается количество микроскопических водорослей. С увеличением кормовой базы возрастает количество ракообразных, рыб и других водных организмов. Затем происходит отмирание огромного количества организмов. Оно приводит к расходованию всех запасов кислорода, содержащегося в воде, и накоплению сероводорода. Обстановка в водоеме меняется настолько, что он становится непригодным для существования любых форм организмов. Водоем постепенно «умирает».
Современный уровень очистки сточных вод таков, что даже в водах, прошедших биологическую очистку, содержание нитратов и фосфатов достаточно для интенсивного эвтрофирования (увеличения содержания биогенных элементов) водоемов.
Пестициды составляют группу искусственно созданных веществ, используемых для борьбы с вредителями и болезнями растений. Установлено, что пестициды уничтожая вредителей, наносят вред многим полезным организмам и подрывают здоровье биоценозов. В водной среде чаще других встречаются представители инсектицидов, фунгицидов и гербицидов.
1.2. Физическое загрязнение
Одним из существенных факторов физического загрязнения является тепловое загрязнение.
Электростанции, промышленные предприятия часто сбрасывают подогретую воду в водоем. Это приводит к повышению температуры воды. С повышением температуры в водоеме уменьшается количество кислорода, увеличивается токсичность загрязняющих воду примесей, нарушается биологическое равновесие.
В загрязненной воде с повышением температуры начинают бурно размножаться болезнетворные микроорганизмы и вирусы. Попав в питьевую воду, они могут вызвать вспышки различных заболеваний.
2. Самоочищение водоемов
Поступающие в водоем загрязнения вызывают в нем нарушение естественного равновесия. Способность водоема противостоять этому нарушению, освобождаться от вносимых загрязнений и составляет сущность процесса самоочищения. Самоочищение представляет собой сложный комплекс физических, физико-химических, химических и биохимических явлений.
Гидродинамические процессы смешения стока с водой водоема во многом определяют интенсивность самоочищения, так как понижают концентрацию загрязнений. К числу физических факторов самоочищения относятся также процессы осаждения нерастворимых примесей, поступающих в водоем со сточными водами. Физические явления осаждения тесно связаны с жизнедеятельностью гидробионтов – фильтраторов и седиментаторов. Они извлекают из воды огромные количества взвеси и выбрасывают непереваренный материал в виде фекальных комочков, легко оседающих на дно. Еще большее значение имеет процесс образования моллюсками псевдофекалий. Таким образом, гидробионты ускоряют процессы осаждения, способствуя очистке воды от взвеси и осаждению ее в донные отложения.
В водоеме протекают и чисто химические реакции нейтрализации, гидролиза, окисления. Например, при самоочищении от ионов Fe, Mg, A1 преобладающим процессом является реакция образования гидроокисей этих металлов с последующим их осаждением.
Самоочищение от ионов тяжелых металлов происходит за счет целого ряда процессов: соосаждения с гидроокисями перечисленных выше металлов, сорбции ионов органическими коллоидами, наконец, за счет образования сложных металлоорганических комплексов с гуминовыми кислотами. Доля участия каждого из этих процессов в удалении тяжелых металлов зависит от величины рН, окислительно-восстановительных условий в водоеме, концентрации металлов. В результате вода освобождается от тяжелых металлов, а в донных отложениях происходит их накопление. Изменение окислительно-восстановительных условий в донных осадках может привести к переходу ионов металлов в водный слой, т. е. к вторичному загрязнению воды.
Минерализация органических загрязнений происходит главным образом за счет биохимических процессов, протекающих с участием разнообразных гидробионтов. Биохимические превращения в водоемах осуществляются как в водной среде, так и в донных отложениях.
Главенствующую роль в окислении растворенных органических веществ играют бактерии. Поступление в водоем органических загрязнений вызывает в нем бурное развитие сапрофитных бактерий. При этом видовой состав бактериального населения определяется характером внесенных загрязнений. В воде развиваются виды, способные использовать те или иные внесенные вещества в качестве источников питания.
Постепенное истощение запасов питательных веществ приводит к уменьшению количества бактерий. Снижение числа бактерий происходит и за счет поедания их представителями зоопланктона (простейшими, коловратками, ракообразными), которые, удаляя из воды коллоиды и мелкую взвесь, одновременно уничтожают и бактерии.
Органические вещества, как внесенные извне, так и образовавшиеся в результате отмирания фито- и зоопланктона, частично оседают на дно. В донных отложениях процессы минерализации протекают столь же интенсивно, как и в водном слое. В этих процессах принимают участие бактерии, черви, моллюски, простейшие, личинки насекомых.
Процессы минерализации заметно усиливаются, если в водоеме присутствуют макрофиты. На стеблях и листьях водных растений обильно развиваются организмы перифитона, принимающего участие в окислении органических веществ. В зарослях макрофитов бентос, как правило, более богат разнообразными организмами-минерализаторами. Макрофиты стимулируют процессы аэробного биохимического разложения органических веществ, выделяя в воду значительные количества кислорода. Кроме того, установлено, что в присутствии макрофитов интенсифицируется деятельность многих бактерий, в частности нефтеокисляющих. Объясняется это явление выделением макрофитами в среду метаболитов, стимулирующих обменные процессы у бактерий.
В процессах самоочищения принимает участие комплекс биоценозов, образованных различными гидробионтами. Большинство из них принимает непосредственное участие и в освобождении водоема от бактериальных загрязнений, в том числе от патогенных микробов. Механизм антибактериального действия гидробионтов достаточно разнообразен. Одни из них поглощают бактерии в качестве питания, другие вызывают лизис клетки, третьи выделяют в среду бактерицидные вещества. Между бактериальным населением и другими гидробионтами складываются взаимоотношения разного типа. Преобладающими среди них являются метабиоз и антагонизм.
Антагонистические отношения между водорослями и бактериями обусловлены несколькими причинами. Это может быть конкуренция за источники азотного питания или то обстоятельство, что в процессе фотосинтеза водоросли подщелачивают среду до рН = 9. Кроме того, многие водоросли (например, зеленые водоросли Chlorella и Scenedesmus) выделяют в среду вещества (мета-болиты), обладающие бактерицидным действием. Установлено, что бактерицидное действие зеленых водорослей распространяется и на бактерии группы Coli, и на возбудителей многих кишечных инфекций. В уничтожении патогенных бактерий принимают участие и бактериофаги.
В водоемах с богатым микробным населением болезнетворные микробы гибнут скорее, чем в водоемах с незначительным количеством гидробионтов. Объясняется это действием антагонистических отношений между бактериями и другими микроорганизмами.
В зимних условиях процессы бактериального самоочищения протекают медленнее, и патогенная микрофлора сохраняется в воде дольше, так как биологические факторы самоочищения при пониженных температурах действуют с малой интенсивностью.
Биохимическая деятельность гидробионтов является доминирующим процессом в самоочищении водоема. Но среди гидробионтов немало организмов, массовое развитие которых может принести и значительный вред.
Цветение пресных водоемов вызывается бурным развитием микроскопических водорослей и некоторых видов жгутиковых. Даже при небольшом цветении резко ухудшаются органолептические свойства воды. Цветение осложняет работу фильтров на водопроводных станциях: фильтры быстро забиваются, а водоросли, накапливаясь в фильтре, начинают разлагаться, придавая воде неприятный привкус и запах.
Массовое развитие некоторых видов сине-зеленых водорослей может служить причиной падежа скота и кишечных отравлений у людей.