
- •1.Предмет теории вероятностей.
- •2.Какие бывают события? Дайте определение каждому из них.
- •3.Что такое случайное событие? Какие виды случайных событий вы знаете? Раскройте сущность каждого вида.
- •4.Что представляет собой полная группа событий? Дайте пример.
- •5.Раскройте сущность основных формул комбинаторики.
- •6.Что такое элементарный исход? Приведите классическое определение вероятности.
- •7. Что такое частота или статическая вероятность случайного события?
- •8. Напишите теоремы сложения вероятностей.
- •9. Приведите теоремы умножения вероятностей.
- •10. Что такое формула полной вероятности?
- •11. Приведите формулу Байеса и объясните ее суть.
- •12. В чем заключается формула Бернулли?
- •13. Приведите формулу Пуассона и укажите, когда она применима?
- •14. Приведите формулы Муавра-Лапласа и укажите, когда их применяют?
- •15. Раскройте сущность понятия «Случайная величина»? приведите пример.
- •16. Что такое функция распределения? Укажите ее свойства.
- •17. Дайте определение понятиям: «Дискретно распределенная случайная величина» и «Непрерывно распределенная случайная величина».
- •18.Приведите законы распределения дискретных случайных величин.
- •19. Приведите законы распределения непрерывных случайных величин.
- •20. Что такое математическое ожидание, дисперсия случайной величины?
- •21. Что представляет собой правило трех сигм?
- •22.Дайте определение генеральной совокупность, выборке.
- •24. Что представляет собой эмпирическая функция распределения?
- •26.Что такое точечное оценивание? Приведите свойства точечных оценок, оценки
- •27.Раскройте метод наибольшего правдоподобия и метод моментов нахождения оценок параметров распределений.
- •30.Дайте определение статистической гипотезы, критерия, ошибок первого и второго рода.
- •31.Дайте определение критической области, мощности критерия.
- •32. Приведите схему проверки статистической гипотезы.
- •33. Что представляет собой проверка гипотез о математическом ожидании и дисперсии случайной величины, распределенной по нормальному закону?
- •35. Что такое проверка гипотез о равенстве математических ожиданий и дисперсий?
- •36. Раскройте сущность однофакторного и двухфакторного дисперсионного анализа.
- •39. Объясните понятие стохастической корреляционной зависимости, регрессии. Что представляют собой задачи корреляционного и регрессионного анализа.
- •40. Как производится построение эмпирического уравнения прямой регрессии?
- •44. Что такое множественная линейная регрессия и корреляция?
15. Раскройте сущность понятия «Случайная величина»? приведите пример.
Случайной величиной называется величина, которая в результате опыта может принять то или иное значение, причем неизвестно заранее, какое именно.
Примеры случайных величин: 1) число попаданий при трех выстрелах; 2) число вызовов, поступавших на телефонную станцию за сутки; 3) частота попадания при 10 выстрелах.
Во всех трех приведенных примерах случайные величины могут принимать отдельные, изолированные значения, которые можно заранее перечислить.
Так, в примере 1) эти значения: 0, 1, 2, 3; в примере 2): 1,2, 3, 4, …; в примере 3) 0; 0,1; 0,2; …; 1,0. Такие случайные величины, принимающие только отделенные друг от друга значения, которые можно заранее перечислить, называются прерывными или дискретными случайными величинами.
16. Что такое функция распределения? Укажите ее свойства.
Функция распределения – самая универсальная характеристика случайной величины. Она существует для всех случайных величин: как прерывных, так и непрерывных. Функция распределения полностью характеризует случайную величину с вероятностной точки зрения, т.е. является одной из форм закона распределения.
Пусть
дано вероятностное пространство
,
и на нём определена случайная величина
с распределением
. Тогда функцией распределения случайной
величины
называется функция
, задаваемая формулой:
Т.е. функцией распределения (вероятностей)
случайной величины X называют функцию
F(x), значение которой в точке x равно
вероятности события
,
т.е. события, состоящего только из тех
элементарных исходов, для которых
Свойства:
непрерывна справа:
не убывает на всей числовой прямой.
Распределение случайной величины однозначно определяет функцию распределения.
Верно и обратное: если функция
удовлетворяет четырём перечисленным выше свойствам, то существует вероятностное пространство и определённая на нём случайная величина, такая что является её функцией распределения.
По определению непрерывности справа, функция имеет правый предел
в любой точке
, и он совпадает со значением функции
в этой точке.
В силу неубывания, функция также имеет и левый предел
в любой точке , который может не совпадать со значением функции. Таким образом, функция либо непрерывна в точке, либо имеет в ней разрыв первого рода.
17. Дайте определение понятиям: «Дискретно распределенная случайная величина» и «Непрерывно распределенная случайная величина».
Если случайная величина может принимать конечное или счетное множество значений, то она называется дискретной (дискретно распределенной). Непрерывной случайной величиной называется такая случайная величина, которая может принимать все значения из некоторого конечного или бесконечного промежутка.