- •Передмова
- •1. Лексичний мінімум загальнонаукового або загальнотехнічного характеру – ііі семестр
- •1.1. Моя майбутня професія. Знайомство з лексикою за фахом. Професійні терміни, їх скорочення.
- •Граматика
- •Теперішній неозначений час
- •Минулий неозначений час.
- •Майбутній неозначений час.
- •Vocabulary
- •1.2. 1.3. Вивчення тексту за фахом. Комп’ютер як інструмент постіндустріального суспільства. Сфери використання (частина 1, частина 2)
- •Граматика
- •Computers
- •1.4. 1.5. Вивчення тексту за фахом. Історія виникнення комп’ютера (частина 1, частина 2)
- •History of computers
- •1.6. Вивчення тексту за фахом. Типи і види комп’ютерів.
- •Kinds of Computer
- •10 Types of Computers
- •2: Desktop
- •3: Laptop
- •4: Netbook
- •6: Workstation
- •7: Server
- •8: Mainframe
- •9: Supercomputer
- •10: Wearable Computer
- •1.7. Вивчення тексту за фахом. Апаратне забезпечення. Пристрої вводу інформації (клавіатура, мишка, сканер).″
- •Граматика
- •Computer hardware
- •H ardware: input devises
- •1.8. Вивчення тексту за фахом. Апаратне забезпечення. Пристрої виводу інформації (монітор, принтер)
- •Hardware and software
- •Computer display
- •Technologies
- •1.9. Семінар за темами
- •2. Лексичний мінімум загальнонаукового або загальнотехнічного характеру – іv семестр
- •2.1. Вивчення тексту за фахом. Коди комп’ютера
- •Computer Codes
- •2.2. Вивчення тексту за фахом. Центральний процесор
- •Пасивний стан дієслова. Passive voice.
- •Central processing unit
- •2.3. Вивчення тексту за фахом. Жорсткий диск
- •Hard disk
- •Mechanics
- •Performance
- •From Wikipedia, the free encyclopedia.
- •How it works
- •Capacity
- •Writing to and reading from cd-rom
- •Copyright Issues
- •Data Formats
- •Manufacture
- •Capacity
- •Exercises
- •Server hardware
- •Computer hardware
- •2.4. Вивчення тексту за фахом. Розвиток комп’ютерної пам’яті
- •Computer storage
- •Different types and different purposes
- •2.5. Вивчення тексту за фахом. Комп’ютерна пам'ять. Сучасність
- •Computer storage
- •Different types and different purposes
- •Primary vs. Secondary Storage
- •A list of storage devices
- •Random Access Memory
- •Overview
- •2.6. Вивчення тексту за фахом. Зовнішні накопичувачі інформації
- •Exercises
- •Manufacture
- •Capacity
- •2.7. Вивчення тексту за фахом. Комп’ютерна графіка.
- •Computer graphics
- •Computer graphics, 2d
- •Computer graphics, 3d
- •2.8. Вивчення тексту за фахом. Операційні системи
- •3.2. Вивчення тексту за фахом.“Прикладні програми. Майкрасофт Офіс” Частина 2
- •3.3. Вивчення тексту за фахом.“Excel як інструмент обробки інформаційних масивів.” Частина 1
- •3.4. Вивчення тексту за фахом.“Excel як інструмент обробки інформаційних масивів.” Частина 2 ……………………………… Microsoft Excel
- •3.5. Вивчення тексту за фахом.“Операційна система ms-dos” Частина 1 …………………………………………………….
- •3.6. Вивчення тексту за фахом.“Операційна система ms-dos” Частина 2 ……………………………………………………. Command.Com
- •Variables. Batch files for command.Com can be said to have 4 kinds of variables:
- •Other commands
- •Command.Com
- •Programming language
- •Features of a programming language
- •History of programming languages
- •Classifications of programming languages
- •Major languages
- •Technical overview
- •List of computer term etymologies
- •"Pc motherboard"
- •10. “The hard disk”. History of the computers with a hard disk drive
- •Computer security
- •Techniques for creating secure systems
- •Notable persons in computer security
- •12. “Input-output devices”
- •Computer display
- •Technologies
- •13. Operating systems
- •14. “Microsoft Windows”
- •Interface
- •Popularity
- •С.Р.№14: Переклад та переказ тексту “Microsoft company” Microsoft
- •History
- •Products and organization
- •The future of Microsoft
- •Filesystem commands
- •Other commands
- •Control structures
- •Variables
- •16. The founder of the Microsoft.
- •17. Ввчення професійної лексики. Computer jargon
- •18. “Programming languages”
- •History of Programming Languages
- •Programming language
- •From Wikipedia
- •Features of a programming language
- •Data types
- •Data structures
- •Instruction and control flow
- •Design philosophies
- •History of programming languages
- •Classifications of programming languages
- •Major languages
- •19. Basic programming language. Basic programming language From Wikipedia, the free encyclopedia.
- •History Background
- •Birth and early years
- •Explosive growth
- •Maturity
- •The language Syntax
- •Procedures and flow control
- •Data types
- •Relational and logical operators
- •Availability and dialect variants
- •Hello World
- •Examples
- •Dialects
- •20. “Pascal programming language” Pascal programming language From Wikipedia, the free encyclopedia.
- •Overview
- •Hello World
- •Major languages
- •Prehistory and specification
- •Defining features
- •21. C programming language. Pascal and c
- •Implementations
- •Publicly available compilers
- •Past criticism
- •22. “Delphi programming language”
- •23. “Microsoft Word” Word 1990 to 1995
- •The Present
- •Versions
- •Word processor From Wikipedia, the free encyclopedia.
- •Characteristics
- •Origin of word processing
- •Word processing programs Programs still available and in use Proprietary
- •Free software
- •Freeware
- •Historically important programs
- •Microsoft Excel From Wikipedia, the free encyclopedia.
- •Versions
- •Competitors
- •External links
- •Versions
- •Text editor From Wikipedia, the free encyclopedia.
- •History
- •Types of text editors
- •Computer hardware From Wikipedia, the free encyclopedia.
- •See also
- •External links
- •24. “Computer graphics” From Wikipedia, the free encyclopedia.
- •Computer graphics, 2d
- •Computer graphics, 3d
- •Related topics
- •Toolkits and apIs
- •Graphics processing unit From Wikipedia, the free encyclopedia.
- •History
- •Current gpu capabilities
- •Gpu manufacturers
- •The Beginning
- •25. “Databases”
- •26. “The history of the Internet” History of the Internet
- •Motivation for the Internet
- •Early Internet work
- •Commercialization and privatization
- •Early applications
- •27. Computer viruses and piracy”
- •Introduction
- •Internet Technical Evolution
- •Related Networks
- •The Development of the Computer
- •First Generation Computers
- •Second Generation Computers
- •Third Generation Computers
- •Fourth Generation Computers
- •28. “The origin of www” Origin of www
- •29. “World Wide Web”
- •Basic terms
- •The three standards
- •Pronunciation of "www"
- •30. “Web server”
- •Common features
- •Server operating systems
- •31. “Web site”
- •Overview
- •Viewing a webpage
- •Creating a webpage
- •Saving a webpage
- •32. Підготовка тез доповіді по курсовому проекту.
- •6. "Computer systems: software” Computer Discussion Forums (http://www.Tech-Computer software From Wikipedia, the free encyclopedia. (Redirected from Software)
- •System and application software
- •Users see three layers of software
- •Software in operation
- •Software creation
- •Software patents
- •4. "Parts of the computer”
- •Display fdis'pleij дисплей modem [mo'dem] модем figure Пир] 'Цифра number [ плтЬэ] номер
- •Computer mouse
- •History of mouse engineering
- •Hard disk
- •Mechanics
- •Performance
- •Computer display
- •Technologies
- •From Wikipedia, the free encyclopedia.
- •How it works
- •Capacity
- •Writing to and reading from cd-rom
- •Copyright Issues
- •Data Formats
- •Manufacture
- •Capacity
- •Exercises
18. “Programming languages”
History of Programming Languages
Programming language
From Wikipedia
An alternate rewrite has been has been proposed. Please refer to it for large rewrites.
A programming language or computer language is a standardized communication technique for expressing instructions to a computer. It is a set of syntactic and semantic rules used to define computer programs. A language enables a programmer to precisely specify what data a computer will act upon, how these data will be stored/transmitted, and precisely what actions to take under various circumstances.
Features of a programming language
Each programming language can be thought of as a set of formal specifications concerning syntax, vocabulary, and meaning.
These specifications usually include:
Data and Data Structures
Instruction and Control Flow
Reference Mechanisms and Re-use
Design Philosophy
Most languages that are widely used, or have been used for a considerable period of time, have standardization bodies that meet regularly to create and publish formal definitions of the language, and discuss extending or supplementing the already extant definitions.
Data types
Internally, all data in a modern digital computer are stored simply as zeros or ones (binary). The data typically represent information in the real world such as names, bank accounts and measurements and so the low-level binary data are organised by programming languages into these high-level concepts.
The particular system by which data are organized in a program is the type system of the programming language; the design and study of type systems is known as type theory. Languages can be classified as statically typed systems, and dynamically typed languages. Statically-typed languages can be further subdivided into languages with manifest types, where each variable and function declaration has its type explicitly declared, and type-inferred languages. It is possible to perform type inference on programs written in a dynamically-typed language, but it is entirely possible to write programs in these languages that make type inference infeasible. Sometimes dynamically-typed languages are called latently typed.
With statically-typed languages, there usually are pre-defined types for individual pieces of data (such as numbers within a certain range, strings of letters, etc.), and programmatically named values (variables) can have only one fixed type, and allow only certain operations: numbers cannot change into names and vice versa. Most mainstream statically-typed languages, such as C, C++, and Java, require all types to be specified explicitly; advocates argue that this makes the program easier to understand, detractors object to the verbosity it produces. Type inference is a mechanism whereby the type specifications can often be omitted completely, if it is possible for the compiler to infer the types of values from the contexts in which they are used -- for example, if a variable is assigned the value 1, a type-inferring compiler does not need to be told explicitly that the variable is an integer. Type-inferred languages can be more flexible to use, particularly when they also implement parametric polymorphism. Examples of type-inferring languages are Haskell, MUMPS and ML.
Dynamically-typed languages treat all data locations interchangeably, so inappropriate operations (like adding names, or sorting numbers alphabetically) will not cause errors until run-time -- although some implementations provide some form of static checking for obvious errors. Examples of these languages are Objective-C, Lisp, JavaScript, Tcl, and Prolog.
Strongly typed languages do not permit the usage of values as different types; they are rigorous about detecting incorrect type usage, either at runtime for dynamically typed languages, or at compile time for statically typed languages. Ada, Java, ML, and Python are examples of strongly typed languages.
Weakly typed languages do not strictly enforce type rules or have an explicit type-violation mechanism, often allowing for undefined behavior, segmentation violations, or other unsafe behavior if types are assigned incorrectly. C, assembly language, C++, and Tcl are examples of weakly typed languages.
Note that strong vs. weak is a continuum; Java is a strongly typed language relative to C, but is weakly typed relative to ML. Use of these terms is often a matter of perspective, much in the way that an assembly language programmer would consider C to be a high-level language while a Java programmer would consider C to be a low-level language.
Note that strong and static are orthogonal concepts. Java is a strongly, statically typed language. C is a weakly, statically typed language. Python is a strongly, dynamically typed language. Tcl is a weakly, dynamically typed language. But beware that some people incorrectly use the term strongly typed to mean strongly, statically typed, or, even more confusingly, to mean simply statically typed--in the latter usage, C would be called strongly typed, despite the fact that C doesn't catch that many type errors and that it's both trivial and common to defeat its type system (even accidentally).
Aside from when and how the correspondence between expressions and types is determined, there's also the crucial question of what types the language defines at all, and what types it allows as the values of expressions (expressed values) and as named values (denoted values). Low-level languages like C typically allow programs to name memory locations, regions of memory, and compile-time constants, while allowing expressions to return values that fit into machine registers; ANSI C extended this by allowing expressions to return struct values as well (see record). Functional languages often restrict names to denoting run-time computed values directly, instead of naming memory locations where values may be stored, and in some cases refuse to allow the value denoted by a name to be modified at all. Languages that use garbage collection are free to allow arbitrarily complex data structures as both expressed and denoted values.
Finally, in some languages, procedures are allowed only as denoted values (they cannot be returned by expressions or bound to new names); in others, they can be passed as parameters to routines, but cannot otherwise be bound to new names; in others, they are as freely usable as any expressed value, but new ones cannot be created at run-time; and in still others, they are first-class values that can be created at run-time.
