- •Введение
- •Основные понятия и определения
- •1.1. Типы данных
- •1.1.1. Понятие типа данных
- •1.1.2. Внутреннее представление базовых типов в оперативной памяти
- •1.1.3. Внутреннее представление структурированных типов данных
- •1.1.4. Статическое и динамическое выделение памяти
- •1.2. Абстрактные типы данных (атд)
- •1.2.1. Понятие атд
- •1.2.2. Спецификация и реализация атд
- •1.3. Структуры данных
- •1.3.1. Понятие структуры данных
- •1.3.2. Структуры хранения — непрерывная и ссылочная
- •1.3.3. Классификация структур данных
- •1.4. Понятие алгоритма
- •1.5. Введение в анализ алгоритмов
- •1.5.1. Вычислительные модели
- •1.5.2. Показатели эффективности алгоритма
- •1.5.3. Постановка задачи анализа алгоритмов
- •1.5.4. Время работы алгоритма
- •Время выполнения в худшем и среднем случае
- •1.5.5. Асимптотические оценки сложности алгоритмов
- •Точная асимптотическая оценка θ
- •Верхняя асимптотическая оценка о
- •Нижняя асимптотическая оценка ω
- •Наиболее часто встречающиеся асимптотические оценки
- •1.6. Анализ рекурсивных алгоритмов
- •1.6.1. Рекурсия и итерация
- •1.6.2. Пример анализа рекурсивного алгоритма
- •1.7. Первые примеры
- •1.7.1. Введение в «длинную» арифметику
- •1.7.2. Примеры рекурсивных алгоритмов
- •1.7.3. Поразрядные операции. Реализация атд «Множество»
- •2. Линейные структуры данных
- •2.1. Атд "Стек", "Очередь", "Дек"
- •2.1.1. Функциональная спецификация стека
- •2.1.2. Функциональная спецификация очереди
- •2.1.3. Деки
- •2.1.4. Общие замечания по реализации атд
- •2.2. Реализация стеков
- •2.2.1. Непрерывная реализация стека с помощью массива
- •2.2.2. Ссылочная реализация стека в динамической памяти
- •2.2.3. Примеры программ с использованием стеков
- •2.3. Реализация очередей
- •2.3.2. Непрерывная реализация очереди с помощью массива
- •2.3.2. Ссылочная реализация очереди в динамической памяти
- •2.3.3. Ссылочная реализация очереди с помощью циклического списка
- •2.3.4. Очереди с приоритетами
- •2.3.5. Пример программы с использованием очереди
- •2.4. Списки как абстрактные типы данных
- •2.4.1. Модель списка с выделенным текущим элементом
- •Операции над списками
- •2.4.2. Однонаправленный список (список л1)
- •2.4.3. Двунаправленный список (список л2)
- •2.4.4. Циклический (кольцевой) список
- •2.5. Реализация списков с выделенным текущим элементом
- •2.5.1. Однонаправленные списки Ссылочная реализация в динамической памяти на основе указателей
- •2.5.2. Двусвязные списки
- •2.5.3. Кольцевые списки
- •2.5.4. Примеры программ, использующих списки Очередь с приоритетами на основе линейного списка
- •2.6. Рекурсивная обработка линейных списков
- •2.6.1. Модель списка при рекурсивном подходе
- •2.6.2. Реализация линейного списка при рекурсивном подходе
- •3. Иерархические структуры данных
- •3.1. Иерархические списки
- •3.1.1 Иерархические списки как атд
- •3.1.2. Реализация иерархических списков
- •3.2. Деревья и леса
- •3.2.1. Определения
- •3.2. Способы представления деревьев
- •3.2.3. Терминология деревьев
- •3.2.4. Упорядоченные деревья и леса. Связь с иерархическими списками
- •3.3. Бинарные деревья
- •3.3.1. Определение. Представления бинарных деревьев
- •3.3.2. Математические свойства и специальные виды бинарных деревьев
- •Вырожденные бинарные деревья
- •Полные бинарные деревья
- •Бинарные деревья минимальной высоты с произвольным числом узлов
- •Почти полные бинарные деревья
- •Идеально сбалансированные бинарные деревья
- •Расширенные бинарные деревья
- •3.4. Деревья как атд
- •Атд «Дерево» и «Лес»
- •Атд «Бинарное дерево»
- •3.5. Соответствие между упорядоченным лесом, бинарным деревом и иерархическим списком
- •3.5.1. Каноническое соответствие между бинарным деревом и упорядоченным лесом
- •3.5.2. Взаимосвязь бинарных деревьев и иерархических списков
- •3.6. Ссылочная реализация бинарных деревьев
- •3.6.1. Ссылочная реализация бинарного дерева на основе указателей
- •3.6.2. Ссылочная реализация на основе массива
- •3.6.3. Пример — построение дерева турнира
- •3.7. Обходы бинарных деревьев и леса
- •3.7.1. Понятие обхода. Виды обходов
- •3.7.2. Пример обходов — дерево-формула
- •3.7.3. Рекурсивные функции обхода бинарных деревьев
- •3.7.3. Нерекурсивные функции обхода бинарных деревьев
- •Прямой порядок обхода (клп)
- •Центрированный порядок обхода (лкп)
- •Обратный порядок обхода (лпк)
- •Обход в ширину
- •3.7.4. Обходы леса
- •3.7.5. Прошитые деревья
- •3.8. Применение деревьев для кодирования информации — деревья Хаффмана
- •3.8.2. Задача сжатия информации. Коды Хаффмана
- •4. Сортировка и родственные задачи
- •4.1. Общие сведения
- •4.1.1. Постановка задачи
- •4.1.2. Характеристики и классификация алгоритмов сортировки
- •4.2. Простые методы сортировки
- •4.2.1. Сортировка выбором
- •4.2.2. Сортировка алгоритмом пузырька
- •4.2.3.Сортировка простыми вставками.
- •4.3. Быстрые способы сортировки, основанные на сравнении
- •4.3.1. Пирамидальная сортировка. Очереди с приоритетами на основе пирамиды
- •Первая фаза сортировки пирамидой
- •Вторая фаза сортировки пирамидой
- •Анализ алгоритма сортировки пирамидой
- •Реализация очереди с приоритетами на базе пирамиды
- •4.3.2. Сортировка слиянием
- •Анализ алгоритма сортировки слиянием
- •4.3.3. Быстрая сортировка Хоара
- •Анализ алгоритма быстрой сортировки
- •4.3.4. Сортировка Шелла
- •4.3.5. Нижняя оценка для алгоритмов сортировки, основанных на сравнениях
- •4.4. Сортировка за линейное время
- •4.4.1. Сортировка подсчетом
- •4.4.2. Распределяющая сортировка от младшего разряда к старшему
- •4.4.3. Распределяющая сортировка от старшего разряда к младшему
- •5. Структуры и алгоритмы для поиска данных
- •5.1. Общие сведения
- •5.1.1. Постановка задачи поиска
- •5.1.2. Структуры для поддержки поиска
- •5.1.3. Соглашения по программному интерфейсу
- •5.2. Последовательный (линейный) поиск
- •5.3. Бинарный поиск в упорядоченном массиве
- •5.4. Бинарные деревья поиска
- •5.4.1. Анализ алгоритмов поиска, вставки и удаления Поиск
- •Вставка
- •Удаление
- •5.4.3. Реализация бинарного дерева поиска
- •5.5. Сбалансированные деревья
- •Определение и свойства авл-деревьев
- •Вращения
- •Алгоритмы вставки и удаления
- •Реализация рекурсивного алгоритма вставки в авл-дерево
- •5.5.2. Сильноветвящиеся деревья
- •Бинарные представления сильноветвящихся деревьев
- •5.5.3. Рандомизированные деревья поиска
- •5.6. Структуры данных, основанные на хеш-таблицах
- •5.6.2. Выбор хеш-функций и оценка их эффективности
- •Модульное хеширование (метод деления)
- •Мультипликативный метод
- •Метод середины квадрата
- •5.6.2. Метод цепочек
- •5.6.3. Хеширование с открытой адресацией
- •5.6.4. Пример решения задачи поиска с использованием хеш-таблицы
5.4.1. Анализ алгоритмов поиска, вставки и удаления Поиск
На рис. 5.1 приведены четыре различных бинарных дерева одинаковой высоты, каждое из которых обладает свойством упорядоченности, поэтому принципиально может использоваться в качестве дерева поиска. При изображении деревьев здесь и далее в узлах будем показывать только значения ключей (целые положительные числа), этого вполне достаточно для того, чтобы понять суть дела.
При достаточной плотности бинарного дерева поиска (рис.5.1,а) оно является очень удобной структурой быстрого поиска. Само название этого дерева, очевидно, связано с тем, что поиск нужного элемента можно выполнить кратчайшим путем. Двигаясь от корня к листьям и поворачивая при этом то вправо, то влево, мы в конце концов или найдем нужное значение ключа (попадание) или дойдем до пустой ссылки (промах). Путь, который был пройден до обнаружения попадания или промаха, назовем путем поиска.
Например, в дереве на рис.5.1,а значение 18 можно найти за 4 сравнения, при этом путь поиска пройдет через узлы с ключами 44 12 42 18 (последнее значение является искомым). Значение 55 будет найдено за 2 сравнения, а 44 (корень) будет обнаружено при первом же сравнении. При поиске значения 100 обнаружим промах за 3 сравнения, а при поиске числа 50 — промах за 2 сравнения.
При восьми узлах дерева это не так плохо, однако можно было бы получить и лучший результат (максимум 4 сравнения при 15 узлах), если бы бинарное дерево поиска оказалось полным (см. разд. 3.4). Действительно, высота полного бинарного дерева
h =log2(n+1)-1,
т.е. в лучшем случае имеем логарифмическую сложность поиска, как для бинарного поиска в отсортированном массиве.
Для дерева на рис.5.1, б получаем результат похуже — для 6 узлов максимум 4 сравнения. И, наконец, на рис.5.1,в и 5.1,г представлены два самых худших варианта — вырожденные деревья, которые, по сути, ничем не отличаются от линейных списков, т. е. дают линейную сложность поиска.
Для того, чтобы избежать подобных крайне нежелательных ситуаций, на практике обычно используют так называемые сбалансированные деревья, высота которых специально поддерживается на своем нижнем уровне или близком к нему. Понятно, что сбалансированность дерева должна поддерживаться во время вставок и удалений элементов. Этому вопросу посвящен отдельный раздел, а сначала рассмотрим самые простые алгоритмы вставки и удаления, которые не гарантируют сбалансированной структуры дерева. Для нас они интересны тем, что с их помощью можно легко понять принципы работы с бинарными деревьями поиска, а затем использоваться их как основу алгоритмов для сбалансированных деревьев.
Для того, чтобы каждый раз отдельно не оговаривать лучший и худший случаи, будем оценивать сложность алгоритмов в зависимости от высоты дерева, а не от количества его узлов. Так, сложность алгоритма поиска можно оценить как
O(h), где h — высота бинарного дерева,
т. е. временная сложность поиска линейно зависит от высоты бинарного дерева поиска.
Вставка
Наиболее простым для реализации случаем вставки в бинарное дерево поиска является вставка каждого нового элемента в качестве листа дерева. В [13, 10] рассматривается алгоритм вставки нового элемента в корень, который также не гарантирует сбалансированности дерева, но приводит к тому, что последние добавленные элементы располагаются вблизи корня, следовательно, будут найдены быстрее (в некоторых задачах это важно). Вставка в корень будет рассмотрена немного позже, в данном разделе рассмотрим алгоритм вставки нового элемента в качестве листа.
Алгоритм вставки листа мало отличается от алгоритма поиска, поскольку сама вставка в уже найденную позицию сводится всего лишь к формированию нового элемента и присвоению значения соответствующей ссылке родителя. Поиск позиции для вставки представляет собой передвижение по пути поиска до обнаружения пустой ссылки.
Например, для того, чтобы вставить в дерево на рис.5.1,а новый узел с ключом 50, сначала перемещаемся по пути поиска. При этом обнаружим пустую ссылку на левого сына у узла с ключом 55. Именно в эту позицию и будет вставлен новый элемент (рис.5.2,а).
Рис.5.2. Добавление узлов в бинарное дерево поиска
Несколько слов о повторяющихся значениях ключей. Для приложений бинарных деревьев поиска это достаточно редкая ситуация, но принципиально она допустима. Попробуем добавить к дереву на рис.5.2,а еще один элемент с ключом 44. Но такой ключ уже есть у корня. Не обращая внимания на это совпадение, движемся дальше по правой ветви, следуя определению бинарного дерева поиска. Новое значение добавится в качестве левого сына только что добавленного листа со значением 50, оказавшись довольно далеко от корня. Можно сказать и точнее— повторяющееся значение будет крайним левым сыном в правом поддереве своего дубликата. Это наблюдение нам еще пригодится при реализации удаления.
Конечно, алгоритм поиска, который работает до первого совпадения, новый лист вообще никогда не найдет, поэтому для повторяющихся ключей этот алгоритм должен быть доработан.
А главный вывод, который можно сделать по алгоритму вставки — его временная сложность имеет тот же порядок, что и поиск. Временная сложность вставки, как и поиска, линейно зависит от высоты дерева.
