- •Введение
- •Основные понятия и определения
- •1.1. Типы данных
- •1.1.1. Понятие типа данных
- •1.1.2. Внутреннее представление базовых типов в оперативной памяти
- •1.1.3. Внутреннее представление структурированных типов данных
- •1.1.4. Статическое и динамическое выделение памяти
- •1.2. Абстрактные типы данных (атд)
- •1.2.1. Понятие атд
- •1.2.2. Спецификация и реализация атд
- •1.3. Структуры данных
- •1.3.1. Понятие структуры данных
- •1.3.2. Структуры хранения — непрерывная и ссылочная
- •1.3.3. Классификация структур данных
- •1.4. Понятие алгоритма
- •1.5. Введение в анализ алгоритмов
- •1.5.1. Вычислительные модели
- •1.5.2. Показатели эффективности алгоритма
- •1.5.3. Постановка задачи анализа алгоритмов
- •1.5.4. Время работы алгоритма
- •Время выполнения в худшем и среднем случае
- •1.5.5. Асимптотические оценки сложности алгоритмов
- •Точная асимптотическая оценка θ
- •Верхняя асимптотическая оценка о
- •Нижняя асимптотическая оценка ω
- •Наиболее часто встречающиеся асимптотические оценки
- •1.6. Анализ рекурсивных алгоритмов
- •1.6.1. Рекурсия и итерация
- •1.6.2. Пример анализа рекурсивного алгоритма
- •1.7. Первые примеры
- •1.7.1. Введение в «длинную» арифметику
- •1.7.2. Примеры рекурсивных алгоритмов
- •1.7.3. Поразрядные операции. Реализация атд «Множество»
- •2. Линейные структуры данных
- •2.1. Атд "Стек", "Очередь", "Дек"
- •2.1.1. Функциональная спецификация стека
- •2.1.2. Функциональная спецификация очереди
- •2.1.3. Деки
- •2.1.4. Общие замечания по реализации атд
- •2.2. Реализация стеков
- •2.2.1. Непрерывная реализация стека с помощью массива
- •2.2.2. Ссылочная реализация стека в динамической памяти
- •2.2.3. Примеры программ с использованием стеков
- •2.3. Реализация очередей
- •2.3.2. Непрерывная реализация очереди с помощью массива
- •2.3.2. Ссылочная реализация очереди в динамической памяти
- •2.3.3. Ссылочная реализация очереди с помощью циклического списка
- •2.3.4. Очереди с приоритетами
- •2.3.5. Пример программы с использованием очереди
- •2.4. Списки как абстрактные типы данных
- •2.4.1. Модель списка с выделенным текущим элементом
- •Операции над списками
- •2.4.2. Однонаправленный список (список л1)
- •2.4.3. Двунаправленный список (список л2)
- •2.4.4. Циклический (кольцевой) список
- •2.5. Реализация списков с выделенным текущим элементом
- •2.5.1. Однонаправленные списки Ссылочная реализация в динамической памяти на основе указателей
- •2.5.2. Двусвязные списки
- •2.5.3. Кольцевые списки
- •2.5.4. Примеры программ, использующих списки Очередь с приоритетами на основе линейного списка
- •2.6. Рекурсивная обработка линейных списков
- •2.6.1. Модель списка при рекурсивном подходе
- •2.6.2. Реализация линейного списка при рекурсивном подходе
- •3. Иерархические структуры данных
- •3.1. Иерархические списки
- •3.1.1 Иерархические списки как атд
- •3.1.2. Реализация иерархических списков
- •3.2. Деревья и леса
- •3.2.1. Определения
- •3.2. Способы представления деревьев
- •3.2.3. Терминология деревьев
- •3.2.4. Упорядоченные деревья и леса. Связь с иерархическими списками
- •3.3. Бинарные деревья
- •3.3.1. Определение. Представления бинарных деревьев
- •3.3.2. Математические свойства и специальные виды бинарных деревьев
- •Вырожденные бинарные деревья
- •Полные бинарные деревья
- •Бинарные деревья минимальной высоты с произвольным числом узлов
- •Почти полные бинарные деревья
- •Идеально сбалансированные бинарные деревья
- •Расширенные бинарные деревья
- •3.4. Деревья как атд
- •Атд «Дерево» и «Лес»
- •Атд «Бинарное дерево»
- •3.5. Соответствие между упорядоченным лесом, бинарным деревом и иерархическим списком
- •3.5.1. Каноническое соответствие между бинарным деревом и упорядоченным лесом
- •3.5.2. Взаимосвязь бинарных деревьев и иерархических списков
- •3.6. Ссылочная реализация бинарных деревьев
- •3.6.1. Ссылочная реализация бинарного дерева на основе указателей
- •3.6.2. Ссылочная реализация на основе массива
- •3.6.3. Пример — построение дерева турнира
- •3.7. Обходы бинарных деревьев и леса
- •3.7.1. Понятие обхода. Виды обходов
- •3.7.2. Пример обходов — дерево-формула
- •3.7.3. Рекурсивные функции обхода бинарных деревьев
- •3.7.3. Нерекурсивные функции обхода бинарных деревьев
- •Прямой порядок обхода (клп)
- •Центрированный порядок обхода (лкп)
- •Обратный порядок обхода (лпк)
- •Обход в ширину
- •3.7.4. Обходы леса
- •3.7.5. Прошитые деревья
- •3.8. Применение деревьев для кодирования информации — деревья Хаффмана
- •3.8.2. Задача сжатия информации. Коды Хаффмана
- •4. Сортировка и родственные задачи
- •4.1. Общие сведения
- •4.1.1. Постановка задачи
- •4.1.2. Характеристики и классификация алгоритмов сортировки
- •4.2. Простые методы сортировки
- •4.2.1. Сортировка выбором
- •4.2.2. Сортировка алгоритмом пузырька
- •4.2.3.Сортировка простыми вставками.
- •4.3. Быстрые способы сортировки, основанные на сравнении
- •4.3.1. Пирамидальная сортировка. Очереди с приоритетами на основе пирамиды
- •Первая фаза сортировки пирамидой
- •Вторая фаза сортировки пирамидой
- •Анализ алгоритма сортировки пирамидой
- •Реализация очереди с приоритетами на базе пирамиды
- •4.3.2. Сортировка слиянием
- •Анализ алгоритма сортировки слиянием
- •4.3.3. Быстрая сортировка Хоара
- •Анализ алгоритма быстрой сортировки
- •4.3.4. Сортировка Шелла
- •4.3.5. Нижняя оценка для алгоритмов сортировки, основанных на сравнениях
- •4.4. Сортировка за линейное время
- •4.4.1. Сортировка подсчетом
- •4.4.2. Распределяющая сортировка от младшего разряда к старшему
- •4.4.3. Распределяющая сортировка от старшего разряда к младшему
- •5. Структуры и алгоритмы для поиска данных
- •5.1. Общие сведения
- •5.1.1. Постановка задачи поиска
- •5.1.2. Структуры для поддержки поиска
- •5.1.3. Соглашения по программному интерфейсу
- •5.2. Последовательный (линейный) поиск
- •5.3. Бинарный поиск в упорядоченном массиве
- •5.4. Бинарные деревья поиска
- •5.4.1. Анализ алгоритмов поиска, вставки и удаления Поиск
- •Вставка
- •Удаление
- •5.4.3. Реализация бинарного дерева поиска
- •5.5. Сбалансированные деревья
- •Определение и свойства авл-деревьев
- •Вращения
- •Алгоритмы вставки и удаления
- •Реализация рекурсивного алгоритма вставки в авл-дерево
- •5.5.2. Сильноветвящиеся деревья
- •Бинарные представления сильноветвящихся деревьев
- •5.5.3. Рандомизированные деревья поиска
- •5.6. Структуры данных, основанные на хеш-таблицах
- •5.6.2. Выбор хеш-функций и оценка их эффективности
- •Модульное хеширование (метод деления)
- •Мультипликативный метод
- •Метод середины квадрата
- •5.6.2. Метод цепочек
- •5.6.3. Хеширование с открытой адресацией
- •5.6.4. Пример решения задачи поиска с использованием хеш-таблицы
Центрированный порядок обхода (лкп)
Алгоритм центрированного обхода несколько сложнее, поскольку в этом случае корень каждого поддерева нельзя обрабатывать сразу, поэтому придется поместить его в стек и двигаться дальше по левой ветви, помещая в стек все узлы до первого листа [7]. Нерекурсивная функция ЛКП обхода может выглядеть так:
void centralstack(bt t) // в центрированном порядке (ЛКП)
{ stack<bt> s; bt p=t;
do // помещаем в стек узел и переходим к левому сыну
{ if (p) { s.push(p); p=left(p);}
else // дошли до левого листа, будем извлекать узлы
{if (!s.isnull())p=s.pop(); else return;
visit(p); // любая обработка узла p
p=right(p); //правое поддерево проходим после корня
}
}
while (true);
В табл. 3.7 представлено содержимое стека перед каждым извлечением очередного элемента.
Таблица 3.7
Содержимое стека при центрированном порядке обхода
|
№ итерации |
Извлекаемый узел |
Содержимое стека |
4 |
D |
dba |
|
5 |
b |
ba |
|
8 |
G |
gea |
|
9 |
E |
ea |
|
10 |
A |
a |
|
12 |
C |
c |
|
14 |
F |
f |
В данном алгоритме обход дерева из семи узлов выполняется за 14 итераций, поскольку на каждой итерации в стек заносится или из него извлекается один узел (итерации, на которых в стек заносится узел, в таблице не показаны).
Обратный порядок обхода (лпк)
Алгоритм обратного обхода на основе вспомогательного стека s реализовать сложнее, чем два других способа. Однако в этом случае можно применить небольшую хитрость, вспомнив, что слово «обратный» означает противоположный порядок по отношению к прямому. Поэтому можно использовать приведенный выше алгоритм прямого обхода, модифицировав его следующим образом.
Вместо обработки узла (корня поддерева) будем помещать его в еще один, дополнительный стек (назовем его стеком вывода sout). Тогда на заключительном этапе алгоритма элементы дополнительного стека будут обработаны в порядке, обратном тому, в котором они поступили в стек.
Поскольку обратный порядок означает ЛПК, а не ПЛК (правое-левое-корень — такой порядок действительно обрабатывал бы узлы в противоположном по отношение к прямому порядке), то внесем еще одно изменение — сначала будем помещать в стек указатель на левого сына, а затем на правого.
Функция обратного обхода может иметь вид:
void reversestack(bt t) // обход в обратном порядке (ЛПК)
// используем дополнительный стек sout
{ stack<bt> s,sout;
s.push(t); bt p;
while (!s.isnull())
{p=s.pop();
sout.push(p);//вместо обработки узла помещаем его в стек
if(left(p)) s.push(left(p));
if(right(p)) s.push(right(p));
}
while (!sout.isnull())// извлекаем узлы из стека
{p=sout.pop(); visit(p);}//любая обработка
}
Обход в ширину
Интересно, что алгоритм прямого обхода можно применить и для реализации обхода в ширину, также выполнив две модификации.
Вместо стека используем очередь, которая как раз подходит для этих целей, поскольку при продвижении от корня к листьям в нее будут попадать все более удаленные от корня элементы. При этом, чем раньше узел попал в очередь, тем раньше он будет обработан.
Вторая модификация такая же, как и для обратного обхода — сначала помещаем в очередь левого сына, а после него правого. Это тоже понятно, поскольку узлы обходятся слева направо.
Предполагаем, что используется шаблон структуры queue, реализация которой рассмотрена предыдущей главе.
Напомним основные операции:
enqueue,dequeue – помещение элемента в очередь и удаление из нее;
isnull – проверка на пустоту.
void widthstack(bt t) // обход в ширину
{ queue<bt> q; // шаблон queue должен быть реализован!
q.enqueue(t); bt p;
while (!q.isnull())
{ p=q.dequeue();
cout << root(p)<<" ";
if(left(p)) q.enqueue (left(p));
if(right(p)) q.enqueue (right(p));
}
}
Все приведенные в данном разделе функции обхода в конце работы оставляют вспомогательные структуры пустыми, т. е. не требуют никакой дополнительной «уборки» памяти.
