- •Введение
- •Основные понятия и определения
- •1.1. Типы данных
- •1.1.1. Понятие типа данных
- •1.1.2. Внутреннее представление базовых типов в оперативной памяти
- •1.1.3. Внутреннее представление структурированных типов данных
- •1.1.4. Статическое и динамическое выделение памяти
- •1.2. Абстрактные типы данных (атд)
- •1.2.1. Понятие атд
- •1.2.2. Спецификация и реализация атд
- •1.3. Структуры данных
- •1.3.1. Понятие структуры данных
- •1.3.2. Структуры хранения — непрерывная и ссылочная
- •1.3.3. Классификация структур данных
- •1.4. Понятие алгоритма
- •1.5. Введение в анализ алгоритмов
- •1.5.1. Вычислительные модели
- •1.5.2. Показатели эффективности алгоритма
- •1.5.3. Постановка задачи анализа алгоритмов
- •1.5.4. Время работы алгоритма
- •Время выполнения в худшем и среднем случае
- •1.5.5. Асимптотические оценки сложности алгоритмов
- •Точная асимптотическая оценка θ
- •Верхняя асимптотическая оценка о
- •Нижняя асимптотическая оценка ω
- •Наиболее часто встречающиеся асимптотические оценки
- •1.6. Анализ рекурсивных алгоритмов
- •1.6.1. Рекурсия и итерация
- •1.6.2. Пример анализа рекурсивного алгоритма
- •1.7. Первые примеры
- •1.7.1. Введение в «длинную» арифметику
- •1.7.2. Примеры рекурсивных алгоритмов
- •1.7.3. Поразрядные операции. Реализация атд «Множество»
- •2. Линейные структуры данных
- •2.1. Атд "Стек", "Очередь", "Дек"
- •2.1.1. Функциональная спецификация стека
- •2.1.2. Функциональная спецификация очереди
- •2.1.3. Деки
- •2.1.4. Общие замечания по реализации атд
- •2.2. Реализация стеков
- •2.2.1. Непрерывная реализация стека с помощью массива
- •2.2.2. Ссылочная реализация стека в динамической памяти
- •2.2.3. Примеры программ с использованием стеков
- •2.3. Реализация очередей
- •2.3.2. Непрерывная реализация очереди с помощью массива
- •2.3.2. Ссылочная реализация очереди в динамической памяти
- •2.3.3. Ссылочная реализация очереди с помощью циклического списка
- •2.3.4. Очереди с приоритетами
- •2.3.5. Пример программы с использованием очереди
- •2.4. Списки как абстрактные типы данных
- •2.4.1. Модель списка с выделенным текущим элементом
- •Операции над списками
- •2.4.2. Однонаправленный список (список л1)
- •2.4.3. Двунаправленный список (список л2)
- •2.4.4. Циклический (кольцевой) список
- •2.5. Реализация списков с выделенным текущим элементом
- •2.5.1. Однонаправленные списки Ссылочная реализация в динамической памяти на основе указателей
- •2.5.2. Двусвязные списки
- •2.5.3. Кольцевые списки
- •2.5.4. Примеры программ, использующих списки Очередь с приоритетами на основе линейного списка
- •2.6. Рекурсивная обработка линейных списков
- •2.6.1. Модель списка при рекурсивном подходе
- •2.6.2. Реализация линейного списка при рекурсивном подходе
- •3. Иерархические структуры данных
- •3.1. Иерархические списки
- •3.1.1 Иерархические списки как атд
- •3.1.2. Реализация иерархических списков
- •3.2. Деревья и леса
- •3.2.1. Определения
- •3.2. Способы представления деревьев
- •3.2.3. Терминология деревьев
- •3.2.4. Упорядоченные деревья и леса. Связь с иерархическими списками
- •3.3. Бинарные деревья
- •3.3.1. Определение. Представления бинарных деревьев
- •3.3.2. Математические свойства и специальные виды бинарных деревьев
- •Вырожденные бинарные деревья
- •Полные бинарные деревья
- •Бинарные деревья минимальной высоты с произвольным числом узлов
- •Почти полные бинарные деревья
- •Идеально сбалансированные бинарные деревья
- •Расширенные бинарные деревья
- •3.4. Деревья как атд
- •Атд «Дерево» и «Лес»
- •Атд «Бинарное дерево»
- •3.5. Соответствие между упорядоченным лесом, бинарным деревом и иерархическим списком
- •3.5.1. Каноническое соответствие между бинарным деревом и упорядоченным лесом
- •3.5.2. Взаимосвязь бинарных деревьев и иерархических списков
- •3.6. Ссылочная реализация бинарных деревьев
- •3.6.1. Ссылочная реализация бинарного дерева на основе указателей
- •3.6.2. Ссылочная реализация на основе массива
- •3.6.3. Пример — построение дерева турнира
- •3.7. Обходы бинарных деревьев и леса
- •3.7.1. Понятие обхода. Виды обходов
- •3.7.2. Пример обходов — дерево-формула
- •3.7.3. Рекурсивные функции обхода бинарных деревьев
- •3.7.3. Нерекурсивные функции обхода бинарных деревьев
- •Прямой порядок обхода (клп)
- •Центрированный порядок обхода (лкп)
- •Обратный порядок обхода (лпк)
- •Обход в ширину
- •3.7.4. Обходы леса
- •3.7.5. Прошитые деревья
- •3.8. Применение деревьев для кодирования информации — деревья Хаффмана
- •3.8.2. Задача сжатия информации. Коды Хаффмана
- •4. Сортировка и родственные задачи
- •4.1. Общие сведения
- •4.1.1. Постановка задачи
- •4.1.2. Характеристики и классификация алгоритмов сортировки
- •4.2. Простые методы сортировки
- •4.2.1. Сортировка выбором
- •4.2.2. Сортировка алгоритмом пузырька
- •4.2.3.Сортировка простыми вставками.
- •4.3. Быстрые способы сортировки, основанные на сравнении
- •4.3.1. Пирамидальная сортировка. Очереди с приоритетами на основе пирамиды
- •Первая фаза сортировки пирамидой
- •Вторая фаза сортировки пирамидой
- •Анализ алгоритма сортировки пирамидой
- •Реализация очереди с приоритетами на базе пирамиды
- •4.3.2. Сортировка слиянием
- •Анализ алгоритма сортировки слиянием
- •4.3.3. Быстрая сортировка Хоара
- •Анализ алгоритма быстрой сортировки
- •4.3.4. Сортировка Шелла
- •4.3.5. Нижняя оценка для алгоритмов сортировки, основанных на сравнениях
- •4.4. Сортировка за линейное время
- •4.4.1. Сортировка подсчетом
- •4.4.2. Распределяющая сортировка от младшего разряда к старшему
- •4.4.3. Распределяющая сортировка от старшего разряда к младшему
- •5. Структуры и алгоритмы для поиска данных
- •5.1. Общие сведения
- •5.1.1. Постановка задачи поиска
- •5.1.2. Структуры для поддержки поиска
- •5.1.3. Соглашения по программному интерфейсу
- •5.2. Последовательный (линейный) поиск
- •5.3. Бинарный поиск в упорядоченном массиве
- •5.4. Бинарные деревья поиска
- •5.4.1. Анализ алгоритмов поиска, вставки и удаления Поиск
- •Вставка
- •Удаление
- •5.4.3. Реализация бинарного дерева поиска
- •5.5. Сбалансированные деревья
- •Определение и свойства авл-деревьев
- •Вращения
- •Алгоритмы вставки и удаления
- •Реализация рекурсивного алгоритма вставки в авл-дерево
- •5.5.2. Сильноветвящиеся деревья
- •Бинарные представления сильноветвящихся деревьев
- •5.5.3. Рандомизированные деревья поиска
- •5.6. Структуры данных, основанные на хеш-таблицах
- •5.6.2. Выбор хеш-функций и оценка их эффективности
- •Модульное хеширование (метод деления)
- •Мультипликативный метод
- •Метод середины квадрата
- •5.6.2. Метод цепочек
- •5.6.3. Хеширование с открытой адресацией
- •5.6.4. Пример решения задачи поиска с использованием хеш-таблицы
Идеально сбалансированные бинарные деревья
Рассмотрим еще один вариант заполнения последнего уровня бинарного дерева минимальной высоты, при котором формирующееся дерево всегда будет идеально сбалансированным. Идеально сбалансированным называется такое бинарное дерево, каждый узел которого обладает следующим свойством — количество узлов в его правом и левом поддереве различается не более чем на единицу. Возможная последовательность добавления узлов к бинарному дереву, при которой оно всегда будет идеально сбалансированным, приведена на рис. 3.9.
Рис.3.9. Последовательность построения идеально сбалансированного бинарного дерева
Полные бинарные деревья являются идеально сбалансированными, более того, для полного бинарного дерева количество узлов в левом и правом поддереве каждого узла всегда одинаково.
Расширенные бинарные деревья
В заключение рассмотрим полезные свойства строго бинарных деревьев (в таких деревьях каждый внутренний узел содержит ровно двух сыновей). Ранее было доказано, что количество листьев в полном бинарном дереве ровно на единицу больше количества внутренних узлов. Можно показать, что данное утверждение справедливо для любого строго бинарного дерева, не обязательно полного. Действительно, пусть количество листьев равно L, а количество внутренних узлов — S. Тогда число ветвей, исходящих из всех внутренних узлов, равно 2S (дерево строго бинарное). Общее количество ветвей дерева на единицу меньше числа узлов и составляет L+S-1 (в каждый узел дерева, кроме корня, входит ровно одна ветвь). Следовательно, 2S=L+S-1, отсюда L=S+1, а общее количество узлов строго бинарного дерева n=2L-1.
Этими полезными свойствами строго бинарных деревьев можно воспользоваться и для анализа обычных бинарных деревьев. Для этого бинарное дерево дополняют фиктивными внешними узлами так, чтобы каждая ветвь дерева заканчивалась таким фиктивным узлом. При таком дополнении любое бинарное дерево превращается в строго бинарное и называется расширенным бинарным деревом. Пример изображения расширенного бинарного дерева изображен на рис. 3.10, при этом фиктивные листья показаны прямоугольниками.
Рис. 3.10. Расширенное бинарное дерево
3.4. Деревья как атд
Аналогично другим структурам данных, таким как линейные и иерархические списки, можно ввести понятия АТД «Дерево», «Лес» и «Бинарное дерево», представив формальную функциональную спецификацию. Однако в данном случае положение осложняется двумя обстоятельствами.
Во-первых, имеется огромное количество алгоритмов, использующих деревья, причем очень часто это деревья специального вида, подобные тем, которые были рассмотрены в предыдущем разделе, а их функции зависят от задачи, для решения которой они предназначены. Во-вторых, для обработки деревьев активно используется как рекурсивный, так и итерационный подход, которые предполагают различные наборы операций (базовых функций). В связи с этим в литературе можно встретить различные варианты функциональной спецификации деревьев [2, 3], а некоторые авторы вообще отказываются от введения АТД при анализе древовидных структур.
Тем не менее, обсуждать вопросы реализации деревьев, не имея никакой функциональной спецификации, затруднительно, поэтому введем соответствующие АТД, выделив минимальный универсальный набор операций. При этом воспользуемся рекурсивным подходом, несколько модифицировав набор операций, который вводился ранее для иерархических списков.
