
- •Введение
- •Основные понятия и определения
- •1.1. Типы данных
- •1.1.1. Понятие типа данных
- •1.1.2. Внутреннее представление базовых типов в оперативной памяти
- •1.1.3. Внутреннее представление структурированных типов данных
- •1.1.4. Статическое и динамическое выделение памяти
- •1.2. Абстрактные типы данных (атд)
- •1.2.1. Понятие атд
- •1.2.2. Спецификация и реализация атд
- •1.3. Структуры данных
- •1.3.1. Понятие структуры данных
- •1.3.2. Структуры хранения — непрерывная и ссылочная
- •1.3.3. Классификация структур данных
- •1.4. Понятие алгоритма
- •1.5. Введение в анализ алгоритмов
- •1.5.1. Вычислительные модели
- •1.5.2. Показатели эффективности алгоритма
- •1.5.3. Постановка задачи анализа алгоритмов
- •1.5.4. Время работы алгоритма
- •Время выполнения в худшем и среднем случае
- •1.5.5. Асимптотические оценки сложности алгоритмов
- •Точная асимптотическая оценка θ
- •Верхняя асимптотическая оценка о
- •Нижняя асимптотическая оценка ω
- •Наиболее часто встречающиеся асимптотические оценки
- •1.6. Анализ рекурсивных алгоритмов
- •1.6.1. Рекурсия и итерация
- •1.6.2. Пример анализа рекурсивного алгоритма
- •1.7. Первые примеры
- •1.7.1. Введение в «длинную» арифметику
- •1.7.2. Примеры рекурсивных алгоритмов
- •1.7.3. Поразрядные операции. Реализация атд «Множество»
- •2. Линейные структуры данных
- •2.1. Атд "Стек", "Очередь", "Дек"
- •2.1.1. Функциональная спецификация стека
- •2.1.2. Функциональная спецификация очереди
- •2.1.3. Деки
- •2.1.4. Общие замечания по реализации атд
- •2.2. Реализация стеков
- •2.2.1. Непрерывная реализация стека с помощью массива
- •2.2.2. Ссылочная реализация стека в динамической памяти
- •2.2.3. Примеры программ с использованием стеков
- •2.3. Реализация очередей
- •2.3.2. Непрерывная реализация очереди с помощью массива
- •2.3.2. Ссылочная реализация очереди в динамической памяти
- •2.3.3. Ссылочная реализация очереди с помощью циклического списка
- •2.3.4. Очереди с приоритетами
- •2.3.5. Пример программы с использованием очереди
- •2.4. Списки как абстрактные типы данных
- •2.4.1. Модель списка с выделенным текущим элементом
- •Операции над списками
- •2.4.2. Однонаправленный список (список л1)
- •2.4.3. Двунаправленный список (список л2)
- •2.4.4. Циклический (кольцевой) список
- •2.5. Реализация списков с выделенным текущим элементом
- •2.5.1. Однонаправленные списки Ссылочная реализация в динамической памяти на основе указателей
- •2.5.2. Двусвязные списки
- •2.5.3. Кольцевые списки
- •2.5.4. Примеры программ, использующих списки Очередь с приоритетами на основе линейного списка
- •2.6. Рекурсивная обработка линейных списков
- •2.6.1. Модель списка при рекурсивном подходе
- •2.6.2. Реализация линейного списка при рекурсивном подходе
- •3. Иерархические структуры данных
- •3.1. Иерархические списки
- •3.1.1 Иерархические списки как атд
- •3.1.2. Реализация иерархических списков
- •3.2. Деревья и леса
- •3.2.1. Определения
- •3.2. Способы представления деревьев
- •3.2.3. Терминология деревьев
- •3.2.4. Упорядоченные деревья и леса. Связь с иерархическими списками
- •3.3. Бинарные деревья
- •3.3.1. Определение. Представления бинарных деревьев
- •3.3.2. Математические свойства и специальные виды бинарных деревьев
- •Вырожденные бинарные деревья
- •Полные бинарные деревья
- •Бинарные деревья минимальной высоты с произвольным числом узлов
- •Почти полные бинарные деревья
- •Идеально сбалансированные бинарные деревья
- •Расширенные бинарные деревья
- •3.4. Деревья как атд
- •Атд «Дерево» и «Лес»
- •Атд «Бинарное дерево»
- •3.5. Соответствие между упорядоченным лесом, бинарным деревом и иерархическим списком
- •3.5.1. Каноническое соответствие между бинарным деревом и упорядоченным лесом
- •3.5.2. Взаимосвязь бинарных деревьев и иерархических списков
- •3.6. Ссылочная реализация бинарных деревьев
- •3.6.1. Ссылочная реализация бинарного дерева на основе указателей
- •3.6.2. Ссылочная реализация на основе массива
- •3.6.3. Пример — построение дерева турнира
- •3.7. Обходы бинарных деревьев и леса
- •3.7.1. Понятие обхода. Виды обходов
- •3.7.2. Пример обходов — дерево-формула
- •3.7.3. Рекурсивные функции обхода бинарных деревьев
- •3.7.3. Нерекурсивные функции обхода бинарных деревьев
- •Прямой порядок обхода (клп)
- •Центрированный порядок обхода (лкп)
- •Обратный порядок обхода (лпк)
- •Обход в ширину
- •3.7.4. Обходы леса
- •3.7.5. Прошитые деревья
- •3.8. Применение деревьев для кодирования информации — деревья Хаффмана
- •3.8.2. Задача сжатия информации. Коды Хаффмана
- •4. Сортировка и родственные задачи
- •4.1. Общие сведения
- •4.1.1. Постановка задачи
- •4.1.2. Характеристики и классификация алгоритмов сортировки
- •4.2. Простые методы сортировки
- •4.2.1. Сортировка выбором
- •4.2.2. Сортировка алгоритмом пузырька
- •4.2.3.Сортировка простыми вставками.
- •4.3. Быстрые способы сортировки, основанные на сравнении
- •4.3.1. Пирамидальная сортировка. Очереди с приоритетами на основе пирамиды
- •Первая фаза сортировки пирамидой
- •Вторая фаза сортировки пирамидой
- •Анализ алгоритма сортировки пирамидой
- •Реализация очереди с приоритетами на базе пирамиды
- •4.3.2. Сортировка слиянием
- •Анализ алгоритма сортировки слиянием
- •4.3.3. Быстрая сортировка Хоара
- •Анализ алгоритма быстрой сортировки
- •4.3.4. Сортировка Шелла
- •4.3.5. Нижняя оценка для алгоритмов сортировки, основанных на сравнениях
- •4.4. Сортировка за линейное время
- •4.4.1. Сортировка подсчетом
- •4.4.2. Распределяющая сортировка от младшего разряда к старшему
- •4.4.3. Распределяющая сортировка от старшего разряда к младшему
- •5. Структуры и алгоритмы для поиска данных
- •5.1. Общие сведения
- •5.1.1. Постановка задачи поиска
- •5.1.2. Структуры для поддержки поиска
- •5.1.3. Соглашения по программному интерфейсу
- •5.2. Последовательный (линейный) поиск
- •5.3. Бинарный поиск в упорядоченном массиве
- •5.4. Бинарные деревья поиска
- •5.4.1. Анализ алгоритмов поиска, вставки и удаления Поиск
- •Вставка
- •Удаление
- •5.4.3. Реализация бинарного дерева поиска
- •5.5. Сбалансированные деревья
- •Определение и свойства авл-деревьев
- •Вращения
- •Алгоритмы вставки и удаления
- •Реализация рекурсивного алгоритма вставки в авл-дерево
- •5.5.2. Сильноветвящиеся деревья
- •Бинарные представления сильноветвящихся деревьев
- •5.5.3. Рандомизированные деревья поиска
- •5.6. Структуры данных, основанные на хеш-таблицах
- •5.6.2. Выбор хеш-функций и оценка их эффективности
- •Модульное хеширование (метод деления)
- •Мультипликативный метод
- •Метод середины квадрата
- •5.6.2. Метод цепочек
- •5.6.3. Хеширование с открытой адресацией
- •5.6.4. Пример решения задачи поиска с использованием хеш-таблицы
1.6. Анализ рекурсивных алгоритмов
1.6.1. Рекурсия и итерация
Рекурсия — это такой способ организации вычислительного процесса, при котором подпрограмма в ходе выполнения обращается сама к себе.
Рекурсия широко применяется в математике. В качестве примера дадим рекурсивное определение суммы первых n натуральных чисел. Сумма первых n натуральных чисел равна сумме первых (n – 1) натуральных чисел плюс n, а сумма первого числа равна 1. Или: Sn = Sn-1 + n; S1 = 1.
Напишем функцию, которая вычисляет сумму, пользуясь данным определением:
int sum(int n)
{ if (n==1) sum=1; else sum=sum(n-1)+n;
}
Обратим внимание на следующие обстоятельства.
Рекурсивная функция содержит всегда, по крайней мере, одну терминальную ветвь и условие окончания (if (n==1) sum=1).
При выполнении рекурсивной ветви (else sum=sum(n-1)+n) процесс выполнения функции приостанавливается, но его переменные не удаляются из стека. Происходит новый вызов функции, переменные которой также помещаются в стек и т.д. Так образуется последовательность прерванных процессов, из которых выполняется всегда последний, а по окончании его работы продолжает выполняться предыдущий процесс. Целиком весь процесс считается выполненным, когда стек опустеет, или, другими словами, все прерванные процессы выполнятся.
Большинство алгоритмов можно реализовать двумя способами: итерацией (т. е. с помощью цикла) и рекурсией. Так, приведенный пример с суммой легко реализуется при помощи цикла, причем это решение более эффективное, т. к. не требует дополнительных расходов стековой памяти. Вообще, если задача имеет очевидное нерекурсивное решение, то следует избрать именно его.
1.6.2. Пример анализа рекурсивного алгоритма
В качестве более интересного примера применения рекурсии рассмотрим следующую задачу. Требуется возвести число a в степень b (a и b – натуральные). Если решать данную задачу «в лоб», то нам потребуется выполнить b умножений: ab=a·a·a…·a (b раз). Однако,
Например, можно
вычислять ab, используя следующие
соображения:
-
итого всего 4 операции умножения, а не
7.
Несложно написать рекурсивную функцию, выполняющую вычисления по данной формуле:
unsigned int pow(unsigned int a, unsigned int b)
{ if (b==1) return a; //терминальная ветвь
else
if (b % 2 == 0)
{ unsigned int p = pow(a,b/2);
return p*p;
}
else return pow(a,b-1)*a;
}
Оценим время выполнения данного алгоритма в худшем случае.
При выполнении функции pow число b, передаваемое при рекурсивном вызове, либо делится на 2 (если оно чётное), либо уменьшается на 1 (если оно нечётное) и тем самым становится чётным. Отсюда можно сделать вывод, что после двух последовательных рекурсивных вызовов число b уменьшится не менее чем в два раза. Рекурсия остановится, когда b станет равным 1. Таким образом, если k-общее число вызовов, то получается следующее соотношение:
,
откуда k=2log2b. Поскольку другие операции внутри рекурсивной функции выполняются за константное время, то, пренебрегая мультипликативной константой 2 и основанием логарифма, получим точную асимптотическую оценку T(b)= Θ (logb), где b — степень (целое число), в которую возводится целое число a.
Отметим, что наименьшее число операций алгоритм будет выполнять, если b является степенью двойки. В этом случае при каждом рекурсивном вызове аргумент будет уменьшаться в два раза. Тогда общее число вызовов k найдётся так:
Отсюда заключаем, что асимптотическая оценка для наилучшего случая совпадает с оценкой для наихудшего случая, причем это точная асимптотическая оценка, т. к. она получена на основе точно рассчитанного выражения для оценки времени выполнения алгоритма путем отбрасывания мультикативной константы.
Несложно показать, что аналогичная оценка выполняется и для памяти: M(b)=Θ(logb) – при каждом рекурсивном вызове в стек помещается некоторое постоянное число байт – локальные переменные и параметры функции.