- •Введение
- •Основные понятия и определения
- •1.1. Типы данных
- •1.1.1. Понятие типа данных
- •1.1.2. Внутреннее представление базовых типов в оперативной памяти
- •1.1.3. Внутреннее представление структурированных типов данных
- •1.1.4. Статическое и динамическое выделение памяти
- •1.2. Абстрактные типы данных (атд)
- •1.2.1. Понятие атд
- •1.2.2. Спецификация и реализация атд
- •1.3. Структуры данных
- •1.3.1. Понятие структуры данных
- •1.3.2. Структуры хранения — непрерывная и ссылочная
- •1.3.3. Классификация структур данных
- •1.4. Понятие алгоритма
- •1.5. Введение в анализ алгоритмов
- •1.5.1. Вычислительные модели
- •1.5.2. Показатели эффективности алгоритма
- •1.5.3. Постановка задачи анализа алгоритмов
- •1.5.4. Время работы алгоритма
- •Время выполнения в худшем и среднем случае
- •1.5.5. Асимптотические оценки сложности алгоритмов
- •Точная асимптотическая оценка θ
- •Верхняя асимптотическая оценка о
- •Нижняя асимптотическая оценка ω
- •Наиболее часто встречающиеся асимптотические оценки
- •1.6. Анализ рекурсивных алгоритмов
- •1.6.1. Рекурсия и итерация
- •1.6.2. Пример анализа рекурсивного алгоритма
- •1.7. Первые примеры
- •1.7.1. Введение в «длинную» арифметику
- •1.7.2. Примеры рекурсивных алгоритмов
- •1.7.3. Поразрядные операции. Реализация атд «Множество»
- •2. Линейные структуры данных
- •2.1. Атд "Стек", "Очередь", "Дек"
- •2.1.1. Функциональная спецификация стека
- •2.1.2. Функциональная спецификация очереди
- •2.1.3. Деки
- •2.1.4. Общие замечания по реализации атд
- •2.2. Реализация стеков
- •2.2.1. Непрерывная реализация стека с помощью массива
- •2.2.2. Ссылочная реализация стека в динамической памяти
- •2.2.3. Примеры программ с использованием стеков
- •2.3. Реализация очередей
- •2.3.2. Непрерывная реализация очереди с помощью массива
- •2.3.2. Ссылочная реализация очереди в динамической памяти
- •2.3.3. Ссылочная реализация очереди с помощью циклического списка
- •2.3.4. Очереди с приоритетами
- •2.3.5. Пример программы с использованием очереди
- •2.4. Списки как абстрактные типы данных
- •2.4.1. Модель списка с выделенным текущим элементом
- •Операции над списками
- •2.4.2. Однонаправленный список (список л1)
- •2.4.3. Двунаправленный список (список л2)
- •2.4.4. Циклический (кольцевой) список
- •2.5. Реализация списков с выделенным текущим элементом
- •2.5.1. Однонаправленные списки Ссылочная реализация в динамической памяти на основе указателей
- •2.5.2. Двусвязные списки
- •2.5.3. Кольцевые списки
- •2.5.4. Примеры программ, использующих списки Очередь с приоритетами на основе линейного списка
- •2.6. Рекурсивная обработка линейных списков
- •2.6.1. Модель списка при рекурсивном подходе
- •2.6.2. Реализация линейного списка при рекурсивном подходе
- •3. Иерархические структуры данных
- •3.1. Иерархические списки
- •3.1.1 Иерархические списки как атд
- •3.1.2. Реализация иерархических списков
- •3.2. Деревья и леса
- •3.2.1. Определения
- •3.2. Способы представления деревьев
- •3.2.3. Терминология деревьев
- •3.2.4. Упорядоченные деревья и леса. Связь с иерархическими списками
- •3.3. Бинарные деревья
- •3.3.1. Определение. Представления бинарных деревьев
- •3.3.2. Математические свойства и специальные виды бинарных деревьев
- •Вырожденные бинарные деревья
- •Полные бинарные деревья
- •Бинарные деревья минимальной высоты с произвольным числом узлов
- •Почти полные бинарные деревья
- •Идеально сбалансированные бинарные деревья
- •Расширенные бинарные деревья
- •3.4. Деревья как атд
- •Атд «Дерево» и «Лес»
- •Атд «Бинарное дерево»
- •3.5. Соответствие между упорядоченным лесом, бинарным деревом и иерархическим списком
- •3.5.1. Каноническое соответствие между бинарным деревом и упорядоченным лесом
- •3.5.2. Взаимосвязь бинарных деревьев и иерархических списков
- •3.6. Ссылочная реализация бинарных деревьев
- •3.6.1. Ссылочная реализация бинарного дерева на основе указателей
- •3.6.2. Ссылочная реализация на основе массива
- •3.6.3. Пример — построение дерева турнира
- •3.7. Обходы бинарных деревьев и леса
- •3.7.1. Понятие обхода. Виды обходов
- •3.7.2. Пример обходов — дерево-формула
- •3.7.3. Рекурсивные функции обхода бинарных деревьев
- •3.7.3. Нерекурсивные функции обхода бинарных деревьев
- •Прямой порядок обхода (клп)
- •Центрированный порядок обхода (лкп)
- •Обратный порядок обхода (лпк)
- •Обход в ширину
- •3.7.4. Обходы леса
- •3.7.5. Прошитые деревья
- •3.8. Применение деревьев для кодирования информации — деревья Хаффмана
- •3.8.2. Задача сжатия информации. Коды Хаффмана
- •4. Сортировка и родственные задачи
- •4.1. Общие сведения
- •4.1.1. Постановка задачи
- •4.1.2. Характеристики и классификация алгоритмов сортировки
- •4.2. Простые методы сортировки
- •4.2.1. Сортировка выбором
- •4.2.2. Сортировка алгоритмом пузырька
- •4.2.3.Сортировка простыми вставками.
- •4.3. Быстрые способы сортировки, основанные на сравнении
- •4.3.1. Пирамидальная сортировка. Очереди с приоритетами на основе пирамиды
- •Первая фаза сортировки пирамидой
- •Вторая фаза сортировки пирамидой
- •Анализ алгоритма сортировки пирамидой
- •Реализация очереди с приоритетами на базе пирамиды
- •4.3.2. Сортировка слиянием
- •Анализ алгоритма сортировки слиянием
- •4.3.3. Быстрая сортировка Хоара
- •Анализ алгоритма быстрой сортировки
- •4.3.4. Сортировка Шелла
- •4.3.5. Нижняя оценка для алгоритмов сортировки, основанных на сравнениях
- •4.4. Сортировка за линейное время
- •4.4.1. Сортировка подсчетом
- •4.4.2. Распределяющая сортировка от младшего разряда к старшему
- •4.4.3. Распределяющая сортировка от старшего разряда к младшему
- •5. Структуры и алгоритмы для поиска данных
- •5.1. Общие сведения
- •5.1.1. Постановка задачи поиска
- •5.1.2. Структуры для поддержки поиска
- •5.1.3. Соглашения по программному интерфейсу
- •5.2. Последовательный (линейный) поиск
- •5.3. Бинарный поиск в упорядоченном массиве
- •5.4. Бинарные деревья поиска
- •5.4.1. Анализ алгоритмов поиска, вставки и удаления Поиск
- •Вставка
- •Удаление
- •5.4.3. Реализация бинарного дерева поиска
- •5.5. Сбалансированные деревья
- •Определение и свойства авл-деревьев
- •Вращения
- •Алгоритмы вставки и удаления
- •Реализация рекурсивного алгоритма вставки в авл-дерево
- •5.5.2. Сильноветвящиеся деревья
- •Бинарные представления сильноветвящихся деревьев
- •5.5.3. Рандомизированные деревья поиска
- •5.6. Структуры данных, основанные на хеш-таблицах
- •5.6.2. Выбор хеш-функций и оценка их эффективности
- •Модульное хеширование (метод деления)
- •Мультипликативный метод
- •Метод середины квадрата
- •5.6.2. Метод цепочек
- •5.6.3. Хеширование с открытой адресацией
- •5.6.4. Пример решения задачи поиска с использованием хеш-таблицы
Верхняя асимптотическая оценка о
К сожалению, далеко не всегда для алгоритма легко получить точную асимптотическую оценку, и приходится удовлетворяться оценками менее точными. Говорят, что f(n)=O(g(n)) (читается “О большое от g от n”), если найдётся такая константа c>0 и такое число n0, что f(n) cg(n) для всех n n0 (рис. 1.4,б). Функция g(n) представляет собой верхнюю асимптотическую оценку функции f(n) (где f(n) - например, время работы или другая характеристика алгоритма).
Зная оценку времени выполнения алгоритма T(n)=O(g(n)), мы можем сказать, что число операций алгоритма не превышает g(n), умноженному на некоторую константу. Однако, мы не знаем, действительно ли алгоритм будет выполнять столько операций – возможно, на самом деле их значительно меньше. Например, для алгоритма сортировки пузырьком, рассмотренного выше, можно сказать, что T(n)=O(n4). Однако, оценка T(n)=O(n3) характеризует алгоритм более точно, а T(n)=O(n2) - ещё точней (она совпадает с точной асимптотической оценкой). При анализе алгоритма нужно стремиться получить верхнюю оценку как можно ниже, тогда она будет иметь практическое значение.
Нижняя асимптотическая оценка ω
Аналогично определяется нижняя асимптотическая оценка. Говорят, что f(n)=Ω(g(n)), если найдётся такая константа c>0 и такое число n0, что f(n) cg(n)) для всех n n0 (рис. 1.4в). Зная, что временя выполнения алгоритма T(n)=Ω(g(n)), мы можем сказать, что число операций алгоритма не меньше, чем g(n), умноженное на некоторую константу. Однако, данная характеристика не показывает, насколько действительно больше операций выполняет алгоритм в действительности. При анализе алгоритма нужно стремиться получить как можно более высокую нижнюю оценку.
Примечание
Иногда нижнюю границу определяют несколько по-другому [3]: говорят, что f(n)=Ω(g(n)), если существует такая константа c, что f(n) cg(n)) для бесконечно большого количества значений n. Например, алгоритм, который выполняет n операций для чётных значений n и n2 для нечётных, с этой точки зрения будет иметь максимальную нижнюю границу Ω(n2), тогда как для ранее данного определения – только Ω(n). Однако, для большинства практических алгоритмов оценки совпадают.
Точная асимптотическая оценка времени работы алгоритма находится где-то между его нижней и верхней оценками. В частности, несложно показать, что если T(n)=O(g(n)) и T(n)=Ω(g(n)), то T(n)=Θ(g(n)).
Исторически так сложилось, что верхняя асимптотическая оценка О была введена намного раньше оценок Θ и Ω (учебник Бахмана по теории простых чисел, 1892 год). Две последних асимптотических оценки были введены Дональдом Кнутом. Возможно, в связи с этим в литературе по программированию чаще используется оценка О, даже в тех случаях, когда она совпадает с точной асимптотической оценкой Θ. В дальнейшем изложении мы будем использовать все асимптотические оценки, отдавая предпочтение точной оценке Θ, если это не связано с чрезмерно большими вычислительными затратами.
Наиболее часто встречающиеся асимптотические оценки
В следующей таблице приведены некоторые наиболее часто встречающиеся асимптотические оценки сложности. Для каждой из них также приводится примерное время работы соответствующей программы на некоторых входных данных, а также его изменение при увеличении размера входных данных в 10 раз (будем считать, что 10 миллионов простых операций выполняются примерно за 1 секунду).
Таблица1.1
Типичные временные оценки сложности
Оценка |
Пояснение и примеры типичных задач |
Время работы при n=10 |
Время работы при n=100 |
Θ(1) |
Время выполнения алгоритма не зависит от объёма входных данных |
100 нс |
100 нс |
Θ(log n) |
Логарифмическое время. Например, двоичный поиск, поиск в сбалансированном дереве и др. |
332 нс |
664 нс |
Θ(n) |
Линейное время. Например, каждый элемент массива обрабатывается постоянное число раз. |
1 мкс |
10 мкс |
Θ(n∙log n) |
Обычно характерно для программ, использующих стратегию ”разделяй и властвуй”, например, алгоритмы быстрой сортировки или сортировка слиянием |
3,32 мкс |
66,44 мкс |
Θ(nk) |
Полиномиальная сложность. Большое число разнообразных алгоритмов. |
10 мкс (для k=2) |
1 с (для k=2) |
Θ(kn) |
Экспоненциальная сложность. Характерна для переборных алгоритмов. |
102 мкс (для k=2) |
4,2·1015 лет (для k=2) |
Θ(n!) |
Факториальная сложность. Также может встретиться в переборных алгоритмах. |
0,363 с |
1,08·10146 лет |
Отметим, что в логарифмической асимптотической оценке основание логарифма принято не указывать, однако в тех случаях, когда при сравнении двух алгоритмов окажется, что оценки времени их выполнения отличаются только основанием логарифма, предпочтение явно следует отдать алгоритму, у которого в оценке основание логарифма больше. На практике очень часто встречается основание логарифма 2.
