- •Введение
- •Основные понятия и определения
- •1.1. Типы данных
- •1.1.1. Понятие типа данных
- •1.1.2. Внутреннее представление базовых типов в оперативной памяти
- •1.1.3. Внутреннее представление структурированных типов данных
- •1.1.4. Статическое и динамическое выделение памяти
- •1.2. Абстрактные типы данных (атд)
- •1.2.1. Понятие атд
- •1.2.2. Спецификация и реализация атд
- •1.3. Структуры данных
- •1.3.1. Понятие структуры данных
- •1.3.2. Структуры хранения — непрерывная и ссылочная
- •1.3.3. Классификация структур данных
- •1.4. Понятие алгоритма
- •1.5. Введение в анализ алгоритмов
- •1.5.1. Вычислительные модели
- •1.5.2. Показатели эффективности алгоритма
- •1.5.3. Постановка задачи анализа алгоритмов
- •1.5.4. Время работы алгоритма
- •Время выполнения в худшем и среднем случае
- •1.5.5. Асимптотические оценки сложности алгоритмов
- •Точная асимптотическая оценка θ
- •Верхняя асимптотическая оценка о
- •Нижняя асимптотическая оценка ω
- •Наиболее часто встречающиеся асимптотические оценки
- •1.6. Анализ рекурсивных алгоритмов
- •1.6.1. Рекурсия и итерация
- •1.6.2. Пример анализа рекурсивного алгоритма
- •1.7. Первые примеры
- •1.7.1. Введение в «длинную» арифметику
- •1.7.2. Примеры рекурсивных алгоритмов
- •1.7.3. Поразрядные операции. Реализация атд «Множество»
- •2. Линейные структуры данных
- •2.1. Атд "Стек", "Очередь", "Дек"
- •2.1.1. Функциональная спецификация стека
- •2.1.2. Функциональная спецификация очереди
- •2.1.3. Деки
- •2.1.4. Общие замечания по реализации атд
- •2.2. Реализация стеков
- •2.2.1. Непрерывная реализация стека с помощью массива
- •2.2.2. Ссылочная реализация стека в динамической памяти
- •2.2.3. Примеры программ с использованием стеков
- •2.3. Реализация очередей
- •2.3.2. Непрерывная реализация очереди с помощью массива
- •2.3.2. Ссылочная реализация очереди в динамической памяти
- •2.3.3. Ссылочная реализация очереди с помощью циклического списка
- •2.3.4. Очереди с приоритетами
- •2.3.5. Пример программы с использованием очереди
- •2.4. Списки как абстрактные типы данных
- •2.4.1. Модель списка с выделенным текущим элементом
- •Операции над списками
- •2.4.2. Однонаправленный список (список л1)
- •2.4.3. Двунаправленный список (список л2)
- •2.4.4. Циклический (кольцевой) список
- •2.5. Реализация списков с выделенным текущим элементом
- •2.5.1. Однонаправленные списки Ссылочная реализация в динамической памяти на основе указателей
- •2.5.2. Двусвязные списки
- •2.5.3. Кольцевые списки
- •2.5.4. Примеры программ, использующих списки Очередь с приоритетами на основе линейного списка
- •2.6. Рекурсивная обработка линейных списков
- •2.6.1. Модель списка при рекурсивном подходе
- •2.6.2. Реализация линейного списка при рекурсивном подходе
- •3. Иерархические структуры данных
- •3.1. Иерархические списки
- •3.1.1 Иерархические списки как атд
- •3.1.2. Реализация иерархических списков
- •3.2. Деревья и леса
- •3.2.1. Определения
- •3.2. Способы представления деревьев
- •3.2.3. Терминология деревьев
- •3.2.4. Упорядоченные деревья и леса. Связь с иерархическими списками
- •3.3. Бинарные деревья
- •3.3.1. Определение. Представления бинарных деревьев
- •3.3.2. Математические свойства и специальные виды бинарных деревьев
- •Вырожденные бинарные деревья
- •Полные бинарные деревья
- •Бинарные деревья минимальной высоты с произвольным числом узлов
- •Почти полные бинарные деревья
- •Идеально сбалансированные бинарные деревья
- •Расширенные бинарные деревья
- •3.4. Деревья как атд
- •Атд «Дерево» и «Лес»
- •Атд «Бинарное дерево»
- •3.5. Соответствие между упорядоченным лесом, бинарным деревом и иерархическим списком
- •3.5.1. Каноническое соответствие между бинарным деревом и упорядоченным лесом
- •3.5.2. Взаимосвязь бинарных деревьев и иерархических списков
- •3.6. Ссылочная реализация бинарных деревьев
- •3.6.1. Ссылочная реализация бинарного дерева на основе указателей
- •3.6.2. Ссылочная реализация на основе массива
- •3.6.3. Пример — построение дерева турнира
- •3.7. Обходы бинарных деревьев и леса
- •3.7.1. Понятие обхода. Виды обходов
- •3.7.2. Пример обходов — дерево-формула
- •3.7.3. Рекурсивные функции обхода бинарных деревьев
- •3.7.3. Нерекурсивные функции обхода бинарных деревьев
- •Прямой порядок обхода (клп)
- •Центрированный порядок обхода (лкп)
- •Обратный порядок обхода (лпк)
- •Обход в ширину
- •3.7.4. Обходы леса
- •3.7.5. Прошитые деревья
- •3.8. Применение деревьев для кодирования информации — деревья Хаффмана
- •3.8.2. Задача сжатия информации. Коды Хаффмана
- •4. Сортировка и родственные задачи
- •4.1. Общие сведения
- •4.1.1. Постановка задачи
- •4.1.2. Характеристики и классификация алгоритмов сортировки
- •4.2. Простые методы сортировки
- •4.2.1. Сортировка выбором
- •4.2.2. Сортировка алгоритмом пузырька
- •4.2.3.Сортировка простыми вставками.
- •4.3. Быстрые способы сортировки, основанные на сравнении
- •4.3.1. Пирамидальная сортировка. Очереди с приоритетами на основе пирамиды
- •Первая фаза сортировки пирамидой
- •Вторая фаза сортировки пирамидой
- •Анализ алгоритма сортировки пирамидой
- •Реализация очереди с приоритетами на базе пирамиды
- •4.3.2. Сортировка слиянием
- •Анализ алгоритма сортировки слиянием
- •4.3.3. Быстрая сортировка Хоара
- •Анализ алгоритма быстрой сортировки
- •4.3.4. Сортировка Шелла
- •4.3.5. Нижняя оценка для алгоритмов сортировки, основанных на сравнениях
- •4.4. Сортировка за линейное время
- •4.4.1. Сортировка подсчетом
- •4.4.2. Распределяющая сортировка от младшего разряда к старшему
- •4.4.3. Распределяющая сортировка от старшего разряда к младшему
- •5. Структуры и алгоритмы для поиска данных
- •5.1. Общие сведения
- •5.1.1. Постановка задачи поиска
- •5.1.2. Структуры для поддержки поиска
- •5.1.3. Соглашения по программному интерфейсу
- •5.2. Последовательный (линейный) поиск
- •5.3. Бинарный поиск в упорядоченном массиве
- •5.4. Бинарные деревья поиска
- •5.4.1. Анализ алгоритмов поиска, вставки и удаления Поиск
- •Вставка
- •Удаление
- •5.4.3. Реализация бинарного дерева поиска
- •5.5. Сбалансированные деревья
- •Определение и свойства авл-деревьев
- •Вращения
- •Алгоритмы вставки и удаления
- •Реализация рекурсивного алгоритма вставки в авл-дерево
- •5.5.2. Сильноветвящиеся деревья
- •Бинарные представления сильноветвящихся деревьев
- •5.5.3. Рандомизированные деревья поиска
- •5.6. Структуры данных, основанные на хеш-таблицах
- •5.6.2. Выбор хеш-функций и оценка их эффективности
- •Модульное хеширование (метод деления)
- •Мультипликативный метод
- •Метод середины квадрата
- •5.6.2. Метод цепочек
- •5.6.3. Хеширование с открытой адресацией
- •5.6.4. Пример решения задачи поиска с использованием хеш-таблицы
1.5.5. Асимптотические оценки сложности алгоритмов
В большинстве случаев нет необходимости находить точное число действий, выполняемых алгоритмом. Интерес представляет общий вид зависимости времени работы алгоритма от размера входных данных, стремящегося в пределе к бесконечности – т.е. асимптотическая временная сложность (аналогично можно рассматривать асимптотическую пространственную сложность). Так, для рассмотренного выше примера сортировки методом пузырька T(n) имеет вид an2+bn+c. Однако, можно огрубить данную зависимость ещё сильней и сказать, что T(n) имеет порядок n2. Слагаемые низшего порядка не учитываются, поскольку при больших входных данных они играют незначительную роль. Мультипликативную константу при старшем члене также обычно опускают. Причины этого в следующем:
Мультипликативная константа может зависеть от разных факторов, не связанных непосредственно с алгоритмом – например, от мастерства программиста, качества компилятора и других факторов.
Для подавляющего большинства известных алгоритмов эта константа находится в разумных пределах. Это означает, что алгоритмы, которые более эффективны асимптотически, оказываются более эффективными и при тех сравнительно небольших размерах входных данных, для которых они используются на практике.
Для примера рассмотрим два алгоритма сортировки. Пусть первый алгоритм выполняет сортировку массива из n чисел за 2·n2 операций, второй – за 100·n·log2n операций. Хотя при совсем маленьких значениях n первый алгоритм работает быстрее, с увеличением n второй алгоритм становится значительно более эффективным. Так, при n=10000 второй алгоритм работает в 15 раз быстрее первого, при n=100000 – в 120 раз, а при n=1000000 – более чем в 1000 раз.
Примечание
Асимптотические оценки всё-таки достаточно грубо характеризуют алгоритм, и в ряде случаев при анализе алгоритма (особенно при сравнении алгоритмов одного порядка сложности) стремятся получить и более точные оценки, например, сколько раз выполнится та или иная специфическая операция. Так, для алгоритмов сортировки часто рассматриваются такие характеристики, как число сравнений элементов и число замен.
Рассмотрим теперь данные понятия более строго, используя асимптотические обозначения, принятые в математике.
Точная асимптотическая оценка θ
Запись f(n)=Θ(g(n))
(читается как “тэта от g от n”), где g(n)
- некоторая функция, означает следующее:
найдутся такие константы c1,c2>0
и такое число n0, что c1g(n)
f(n)
c2g(n)
для всех n
n0.
Функция g(n) в этом случае является
асимптотически точной оценкой для
f(n). На рис. 1.4а. показана иллюстрация
данного определения.
Рис .1.4. Иллюстрации к определениям f(n)=Θ(g(n)), f(n)=O(g(n), f(n)=Ω(g(n)) (рисунок взят из [10]).
Здесь и далее предполагается, что функции f и g неотрицательны по крайней мере для достаточно больших n.
Пример 1. Покажем, что (n+1)2=Θ(n2). Нам нужно найти такие константы c1 и c2, что для всех достаточно больших n будут выполняться неравенства: c1n2 (n+1)2, (n+1)2 c2n2.
Возьмём c1=1, тогда первое неравенство, очевидно, верно для всех n 1. Возьмём c2=4. Тогда имеем:
(n+1)2
4n2
(n+1)2-4n2
0
(n+1-2n)(n+1+2n)
0
(1-n)(3n+1)
0.
Полученное неравенство также выполняется для всех n 1. Таким образом, действительно (n+1)2=Θ(n2).
Пример 2. Покажем,
что 3n
Θ(2n).
Для этого убедимся, что неравенство
3n
c22n
не может выполняться для всех достаточно
больших n ни для какого
фиксированного c2.
Имеем:
3n c22n (3/2)n c2.
Какая бы большая ни была константа c2, выражение (3/2)n при достаточно больших n всё равно превысит её. Отсюда следует, что 3n Θ(2n).
Используя аналогичные рассуждения, легко показать, что точная асимптотическая оценка времени выполнения рассмотренного выше алгоритма сортировки пузырьком T(n)= Θ (n2) в наихудшем случае.
