Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Меньшуткин- ПСЕ(переделанное).doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
152.06 Кб
Скачать

1.4 Сверхпрочные и термостойкие материалы

Ассортимент материалов различного назначения постоянно расширяется. Последнее десятилетие создана естественно – научная база для разработки принципиально новых материалов с заданными свойствами. Например, сталь, содержащая 18 % никеля, 8% кобальта и 3 – 5% молибдена, отличается высокой прочностью – отношение прочности к плотности для нее в несколько раз больше, чем для некоторых алюминиевых и титановых сплавов. Преимущественная область ее применения – авиационная и ракетная техника.

Продолжается поиск новых высокопрочных алюминиевых сплавов. Плотность их сравнительно не велика и применяются они при относительно не высоких температурах – примерно до 320 градусов. Для высокотемпературных условий подходят титановые сплавы, обладающие высокой коррозионной стойкостью.

Идет дальнейшее развитие порошковой металлургии. Прессование металлических и других порошков – один из перспективных способов повышения прочности и улучшения других свойств прессуемых материалов.

В последние десятилетие большое внимание уделяется разработке композиционных материалов, т.е. материалов, состоящих из компонентов с различными свойствами. В таких материалах содержится основа, в которой распределены усиливающие элементы: волокна, частицы и т.п. Композиты могут включать стекло, металл, дерево, искусственные вещества, в том числе и пластмассы. Большое число возможных комбинаций компонентов позволяет получить разнообразные композиционные материалы.

При комбинировании поли – и монокристаллических нитей с полимерными матрицами (полиэфирами, фенольными и эпоксидными смолами) получаются материалы, которые по прочности не уступают, стали, но легче ее в 4 – 5 раз.

Материалом будущего станет такой, который будет не только сверхпрочным, но и стойким при длительном воздействии агрессивной среды.

Создание термостойких материалов – одна из важнейших задач развития современных химических технологий.

К настоящему времени разработаны перспективные способы изготовления термостойких материалов. К ним относятся: имплантация ионов, на какой – либо поверхности; плазменный синтез; плавление и кристаллизация в отсутствии гравитации; напыление на поликристаллические, аморфные и кристаллические поверхности с помощью молекулярных пучков; химическая конденсация из газовой фазы в тлеющем плазменном разряде и др.

С применением современных технологий получены, например, нитрид кремния и силицид вольфрама – термостойкие материала для микроэлектроники. Нитрид кремния обладает превосходным электроизолирующим свойствами даже при небольшой толщине слоя-менее 0,2мкм. Силицид вольфрама отличается весьма малым электрическим сопротивлением. Данные материалы в виде тонкой пленки напыляются на элементы интегральных схем. Напыление производится методом плазменного осаждения на менее термостойкую подложку без заметного изменения ее свойств.

Представляет практический интерес способ получения новых керамических материалов для изготовления, например, цельнокерамического блока цилиндров двигателя внутреннего сгорания. Данный способ заключается в отливке кремнийсодержащего полимера в форму заданной конфигурации с последующим нагреванием, при котором полимер превращается в термостойкий и прочный карбид или нитрид кремния.

Новые технологии позволяют синтезировать более термостойкие материалы.