- •Ответы на вопросы второго коллоквиума по дисциплине «Системы управления»
- •Необходимость и значение автоматизации производства в химической промышленности
- •Технологический объект управления, его входные и выходные величины
- •Понятие о нормальном технологическом режиме
- •Задачи управления
- •Системы автоматизации
- •Местный контроль и ручное управление
- •Дистанционный контроль
- •Системы автоматического регулирования (аср)
- •Структурная схема аср
- •Характеристика отдельных элементов
- •Понятие об объектах регулирования (ор)
- •Объекты с сосредоточенными и распределенными параметрами
- •Управляемые и управляющие величины объектов
- •Статические и динамические режимы ор
- •Уравнения статики и динамики; статические и динамические характеристики
- •Линеаризация нелинейных характеристик
- •Чувствительность информационных каналов ор
- •Задачи, решаемые с использованием статических и динамических характеристик
- •Самовыравнивание как свойство объектов регулирования
- •Степень самовыравнивания. Ее влияние на вид динамической характеристики объекта
- •Устойчивые и нейтральные объекты
- •Емкость как свойство ор и характеристика инерционных свойств ор
- •Время разгона
- •Влияние емкости на вид динамической характеристики ор Одно-, двух- и многоемкостные объекты
- •Запаздывание как свойство ор. Время запаздывания
- •У равнения динамики и динамические характеристики устойчивых и нейтральных объектов с запаздыванием
- •Уравнения динамики и динамические характеристики объектов регулирования 1-го и 2-го порядка
- •Связь между структурой уравнения динамики объекта и его свойствами. Пример
- •Аналитическое определение свойств ор
- •Состав математической модели ор
- •Модели статики и динамики
- •Последовательность составления уравнений динамики ор
- •Составление уравнения динамики и нахождение динамической характеристики гидравлического резервуара со свободным сливом жидкости
- •Составление уравнения динамики и нахождение динамической характеристики гидравлического резервуара, жидкость из которого откачивается центробежным насосом
- •Экспериментальное определение свойств ор
- •Пример определения свойств объекта по кривой разгона
- •Аппроксимация объектов второго порядка
- •Автоматические регуляторы (ар). Определение
- •Структурная схема
- •Классификация ар по наличию и виду подводимой энергии, регулируемой величине, характеру действия, характеру регулирующего воздействия, закону регулирования
- •Позиционные регуляторы. Их особенности
- •Статическая и динамическая характеристики
- •Переходный процесс и критерии качества регулирования в системах с позиционными регуляторами
- •Работа пи-регулятора в замкнутом контуре
- •Работа пид-регуляторов в замкнутом контуре
- •Преимущества и недостатки, область применения
- •Исполнительные устройства
- •Исполнительные механизмы и регулирующие органы. Их виды
- •Составление уравнения динамики и нахождение переходной характеристики аср, состоящей из устойчивого объекта регулирования 1-го порядка без запаздывания и п-регулятора
- •Составление уравнения динамики и нахождение переходной характеристики аср, состоящей из устойчивого объекта регулирования 1-го порядка без запаздывания и пд-регулятора
- •Составление уравнения динамики и нахождение переходной характеристики аср, состоящей из устойчивого объекта регулирования 1-го порядка без запаздывания и пи-регулятора
- •Типовые динамические звенья
- •Уравнения динамики, переходные характеристики, передаточные функции звеньев
- •Изображение приборов и средств автоматизации на функциональных схемах.
- •Основные условные обозначения
- •Регулируемые величины и функциональные признаки приборов
- •Примеры
- •Развернутый и упрощенный варианты построения условных графических обозначений систем регулирования
- •Автоматизация центробежных и поршневых насосов и компрессоров
- •Цель автоматизации насосов
- •Составить и обосновать схему регулирования указанных объектов управления
- •Цель автоматизации компрессоров
- •Составить и обосновать схему регулирования указанных объектов управления
- •29 Автоматизация теплообменников смешения и поверхностных теплообменников
- •Технологический объект управления – выпарная установка. Сформулировать цель автоматизации
- •Составить и обосновать схему регулирования основных технологических переменных, используя одноконтурные аср.
- •Технологический объект управления – барабанная прямоточная сушилка, в которой сушильным агентом являются топочные газы
- •Сформулировать цель автоматизации
- •Составить и обосновать схему регулирования основных технологических переменных, используя одноконтурные аср
- •Технологический объект управления – ректификационная установка
- •Составить и обосновать схему регулирования основных технологических переменных, если целевым продуктом является дистиллят, используя одноконтурные аср
- •Технологический объект управления – ректификационная установка
- •Составить и обосновать схему регулирования основных технологических переменных, если целевым продуктом является кубовая жидкость, используя одноконтурные аср
- •Технологический объект управления – абсорбционная установка
- •Составить и обосновать схему регулирования основных технологических переменных, если целевым продуктом является обедненный газ, используя одноконтурные аср
- •Технологический объект управления – абсорбционная установка
- •Составить и обосновать схему регулирования основных технологических переменных, если целевым продуктом является насыщенный абсорбент, используя одноконтурные аср
Понятие об объектах регулирования (ор)
О
бъект
регулирования – это часть технологического
объекта управления, поведение которой
характеризуется одной технологической
величиной.
Цели изучения ОР:
Понять задачу оптимизации и регулирования объекта,
Выбрать (на входе) управляемые и (на выходе) управляющие величины,
Определить степени влияния входных величин на выходные – определить внутренние свойства объекта,
Выбрать канал управления.
ОР классифицируют:
По количеству выходных величин:
одномерные имеют одну выходную величину и описываются одним уравнением статики и одним уравнением динамики. Пример – резервуар для жидкости (рис.II-1), входными величинами которого являются приход Fпр и расход Fр жидкости, а выходной величиной – уровень жидкости L. Увеличение (уменьшение) Fпр или Fр вызывает изменение уровня L. Уравнение статики этого объекта L = f(Fпр, Fр) и уравнение его динамики L = f(Fпр, Fр, t).
многомерные содержат по две, три и более выходных величины, число уравнений должно соответствовать числу выходных величин. Пример – непрерывно действующий экзотермический реактор идеального перемешивания. Схемы реактора и его динамических каналов приведены на рис.II-3. Реактор имеет пять входных величин: концентрация Qн и температура Тн реагентов на входе в реактор, расход реагентов в реактор F, а также тепло, отводимое из реактора системой охлаждения и определяемое расходом хладагента Fс и его температурой Тс). Выходными величинами являются концентрация продуктов реакции Q и температура в реакторе Т. Для стабилизации температуры Т в реакторе изменяют расход хладагента Fс, а для обеспечения постоянства состава продуктов реакции Q – расход F реагентов, подаваемых в реактор. При этом изменение расхода хладагента Fс вызывает также изменение состава продуктов реакции Q, а колебание расхода исходных реагентов F приводит к изменению температуры Т реакционной массы в реакторе. Кроме того, выходные величины реактора (Q и Т) зависят от концентрации Qн и температуры Тн входного продукта, а также от температуры хладагента Тс. Выходные величины такого реактора находят из уравнений динамики
Q = f1(F, Fc, Qн, Тн, Тс, t) T = f2(Fc, F, Qн, Тн, Тс, t)
Таким образом, обе выходные величины реактора испытывают влияние всех его входных величин. Прохождение сигналов по каждому каналу может быть выражено своим уравнением динамики или своей передаточной функцией.
Объекты с сосредоточенными и распределенными параметрами
Объекты с сосредоточенными параметрами. К ним относятся объекты, регулируемые величины которых имеют одно числовое значение в данный момент времени (уровень жидкости в аппарате, давление газа в газгольдере и др.). Например, резервуар для жидкостей, испаритель, химический реактор.
Объекты с распределенными параметрами. К ним относятся объекты, регулируемые величины которых (температура жидкости по длине теплообменника, концентрации компонентов по высоте ректификационной колонны и др.) имеют разные числовые значения в различных точках объекта в данный момент времени. Например, аппараты типа «труба в трубе», в которых осуществляется теплообмен между жидкостями, массообменные аппараты колонного типа (ректификационные колонны, экстракторы, абсорберы, десорберы), барабанные сушилки для сыпучих материалов, трубчатые реакторы для превращения вещества и др.
