Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3. ТЕОРЕМЫ О ПР-ВАХ.docx
Скачиваний:
2
Добавлен:
01.03.2025
Размер:
1.61 Mб
Скачать

3.2. Понятие меры

Как найти площадь Восстания?

Малограмотный человек скажет,

что нужно длину Восстания умножить на его ширину.

грамотный человек скажет,

что нужно взять интеграл по поверхности,

а математик скажет,

что сначала нужно понять структуру этой поверхности.

К омментарий. Понятие меры есть естественное обобщение понятий длины, площади, объёма и их приложений. Рассмотрим античный способ измерения площади метод палеток. Пусть ограниченная плоская фигура, которую без ограничения общности можно считать целиком принадлежащей квадрату на плоскости.

Разобьем этот квадрат на квадратов (палеток) и обозначим через множество тех квадратов, которые целиком содержатся в множестве , а через – множество тех квадратов, каждый из которых пересекается с . Ясно, что . Обозначим через и площади соответствующих множеств квадратов. Тогда при возрастании множества возрастают, а множества убывают, то есть

.

Последовательность не убывает и ограничена сверху, а последовательность не возрастает и ограничена снизу. Поэтому эти последовательности имеют пределы , и , которые называются соответственно внутренней и внешней мерой Жордана множества . Если они совпадают, то есть , то называется мерой Жордана множества , а фигура называется измеримой (квадрируемой). Аналогично строится мера Жордана множества и для . Длина, площадь, объём обладают естественными свойствами, которые, как всегда, примем за аксиомы.

Определение 1. Под мерой будем понимать функцию, заданную на множестве всех измеримых фигур, обладающую следующими свойствами:

1. .

2. Мера суммы конечной или счётной системы попарно непересекающихся множеств равна сумме их мер: .

3 При перемещении множества как твёрдого тела его мера не меняется.

4. Мера единичного квадрата(отрезка, куба) равна единице.

Комментарий. Пример измеримого, но очень специфического множества даёт канторов дисконтинуум. Это подмножество отрезка числовой оси, состоящее из всех чисел вида , где равно 0 или 2, которое получается следующим образом. Отрезок делится на три части и затем выбрасывается средняя часть . Оставшиеся отрезки вновь делим на три части и выбрасываем средние части . И так далее. Это называют процедурой Кантора.

Ясно, что множество тех сегментов, которые целиком содержатся в канторовом дисконтинууме пусто. Множество же тех сегментов, каждый из которых пересекается с отрезком образует последовательность , которая стремится к нулю. Таким образом, мера Жордана канторова дисконтинуума равна нулю.

Не все множества измеримы по Жордану. Опять применим процедуру Кантора к отрезку и удалим из него интервал с длиной, меньшей, чем . Затем из каждого из получившихся двух сегментов удалим интервалы с общей длиной, меньшей, чем , и так далее. В результате общая длина удалённых частей , то есть то, что осталось, имеет длину , тогда как фигура не содержит никакого отрезка, то есть . Стало быть, фигура не измерима по Жордану.

Ещё один важный пример. Рассмотрим множество рациональных чисел сегмента . Это множество плотно на сегменте . То есть между любыми двумя точками сегмента найдутся как рациональные числа, так и иррациональные. Разделим сегмент на две части, затем на четыре части и т. д. Множество тех сегментов, которые целиком содержатся во множестве рациональных чисел пусто и его мера равна нулю. Множество же тех сегментов, каждый из которых пересекается с отрезком просто состоит из этих сегментов, то есть их объединение и составляет отрезок , мера которого по определению равна единице. То есть множество рациональных чисел неизмеримо по Жордану. Абсолютно такие же рассуждения приводят к тому, что множество иррациональных чисел тоже неизмеримо по Жордану. Получается, что отрезок , мера которого равна единице, состоит из неизмеримых множеств.

Кроме того, мера Жордана не обладает счётной аддитивностью (счётной аддитивностью), то есть объединение счётного числа непересекающихся измеримых множеств может и не быть измеримым множеством. Например, точка измерима по Жордану и мера её ноль, но счётное множество точек множество рациональных чисел неизмеримо по Жордану. Таким образом, не выполняется свойство 2 определения меры.

Таким образом, возникает задача по крайней мере расширить число измеримых множеств.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]