
- •Министерство образования и науки российской федерации рязанская государственная радиотехническая академия безопасность жизнедеятельности
- •Лабораторная работа № 1 шум и методы борьбы с ним
- •1. Звук и его характеристики
- •2. Особенности субъективного восприятия звука
- •3. Характеристики шума и его нормирование
- •4. Методы и средства борьбы с шумом
- •Экспериментальная часть
- •1. Стенд для измерения характеристик шума
- •Содержание отчёта
- •Результаты измерений и расчёта
- •Контрольные вопросы
- •Библиографический список
- •2. Факторы, влияющие на исход поражения человека током
- •3. Нормирование напряжений прикосновения и токов через тело человека
- •4. Электрическое сопротивление тела человека
- •Экспериментальная часть
- •1. Стенд для измерения сопротивления тела человека
- •2. Порядок выполнения работы
- •При заполнении табл. 4 используются данные измерений для площади электродов s2 и все значения напряжений Uh от 1 до 11 в.
- •3. Обработка экспериментальных данных
- •4. Порядок расчета параметров эквивалентной схемы сопротивления тела человека
- •4.3. Определяется значение емкости
- •Содержание отчёта
- •Эквивалентная схема электрического сопротивления тела человека.
- •Расчёт параметров эквивалентной схемы сопротивления тела человека.
- •Контрольные вопросы
- •Библиографический список
- •Лабораторная работа № 3 измерение сопротивлений изоляции и заземления
- •Теоретическая часть
- •2. Заземление
- •3. Процесс растекания электрического тока в грунте
- •4. Напряжения прикосновения и шага
- •5. Измерение сопротивления заземляющих устройств
- •Экспериментальная часть
- •Расчёт заземляющего устройства
- •Лабораторная работа № 4 исследование микроклимата на рабочем месте
- •1. Микроклимат и его влияние на организм человека
- •2. Основные параметры микроклимата
- •3. Нормирование параметров микроклимата
- •Оптимальные (допустимые) параметры микроклимата
- •4. Приборы для исследования параметров микроклимата
- •Порядок выполнения работы
- •Контрольные вопросы
- •Библиографический список
- •2. Особенности субъективного восприятия света
- •5. Нормирование освещённости рабочих мест
- •2. Методика оценки опасности поражения током
- •3. Режимы и эквивалентные преобразования схемы трёхфазной сети
- •4. Анализ опасности однофазного прикосновения в син
- •5. Анализ опасности однофазного прикосновения в сзн
- •Экспериментальная часть
- •Порядок выполнения работы приведен в материалах лабораторного стенда. Содержание отчёта
- •Контрольные вопросы
- •ПеРвая помощь челоВеКу, пораженному
- •2. Первая помощь человеку, пораженному током
- •Действовать как можно быстрее;
- •Самому не попасть под действие электрического тока.
- •Практическая часть
- •Контрольные вопросы
- •2. Системный анализ безопасности жизнедеятельности
- •3. Принципы и средства обеспечения бжд
- •4. Анализ условий жизнедеятельности
- •Порядок выполнения работы
- •Содержание отчета
- •Библиографический список
- •Содержание
- •390005, Рязань, ул. Гагарина, 59/1.
2. Методика оценки опасности поражения током
Оценка опасности поражения человека током заключается в нахождении значения тока, протекающего через тело человека (основной фактор, влияющий на исход поражения), и сравнении полученного значения с допустимым по соображениям безопасности [2].
Ток, протекающий через тело человека Ih, связан с напряжением прикосновения Uh, приложенным непосредственно к телу человека, и сопротивлением тела человека Rh: Ih = Uh/Rh = Uhп/Rhп, где Uhп – падение напряжения на сопротивлении Rhп (рис. 2). В худшем случае человек дополнительно не защищен, поэтому Rдоп = 0 и Rhп = Rh.
Согласно ГОСТ 12.1.038-82* [2] при расчётах значение Rh следует выбирать в зависимости от допустимого напряжения прикосновения. Для приближённой оценки опасности обычно используют значение Rh = 1 кОм.
При этом различают ощутимый, неотпускающий и фибрилляционный токи и их пороговые, т.е. наименьшие значения. Ощутимые токи вызывают ощутимые раздражения, неотпускающие приводят к непреодолимым сокращениям мышц руки, фибрилляционные - к беспорядочному сокращению волокон сердечной мышцы (фибрилл), при котором сердце не в состоянии выполнять функции кровяного насоса.
При частоте 50 Гц пороговое значение ощутимого тока - 1 мА, неотпускающего - 10 мА, фибрилляционного – 100 мА.
3. Режимы и эквивалентные преобразования схемы трёхфазной сети
В трехфазной сети различают нормальный режим работы НР и аварийный АР, при котором одна из фаз оказывается замкнутой на землю через небольшое эквивалентное сопротивление замыкания Rзм, составляющее в большинстве случаев десятки и сотни Ом.
Для удобства анализа аварийный режим подразделяют на АР1 и АР2. При АР1 на землю оказывается замкнутой фаза, к которой прикасается человек. При АР2 человек прикасается к исправной фазе сети в момент, когда другая фаза оказывается замкнутой на землю.
Н
а
рис. 3 представлена обобщённая эквивалентная
схема трёхфазной электрической сети,
где переключатель S
позволяет анализировать работу сети в
режимах НР,
АР1
и АР2.
Рис. 3. Обобщённая эквивалентная схема трёхфазной сети
На основе операции электрического расщепления узлов фаз A и B можно перейти к эквивалентной схеме, представленной на рис. 4.
Рис. 4. Эквивалентная схема трёхфазной сети с расщеплёнными узлами
На этой схеме пунктиром выделен эквивалентный двухполюсник ЭДП, включающий элементы, характеризующие вид нейтрали, прикосновение человека и режим работы сети.
Учитывая, что в симметричной трехфазной сети ÚA + ÚB + ÚC = 0 (см. рис. 1,б), схему рис. 4 можно преобразовать в схемы рис. 5.
Рис. 5. Эквивалентное преобразование схемы трёхфазной сети
Приведённая на рис. 5,б схема является обобщенной и используется для определения токов через тело человека при однофазном прикосновении и различных сочетаниях вида нейтрали сети (СИН и СЗН) и режима ее работы (НР, АР1, АР2). При этом в СИН условно принимают R0 , а в СЗН пренебрегают влиянием сопротивлений Z изоляции фаз, так как |Z/3| >> R0.
4. Анализ опасности однофазного прикосновения в син
В нормальном режиме работы сети переключатель S схемы рис. 5,б находится в положении НР, и схема сети принимает вид, представленный на рис. 6,а. Из схемы рис. 6,а следует, что значение тока через тело человека при фазном напряжении U определяется формулой:
(1)
Если
| Z/3
| >> Rhn,
то
(2)
г
де
= 2
f
; f
–частота
сети (f
=
50 Гц), C
и R
– емкости и сопротивления изоляции фаз
относительно земли.
Рис. 6. Эквивалентные схемы СИН
Если ёмкости изоляции фаз относительно земли малы (C 0), что имеет место в коротких воздушных линиях, то в формуле (2) следует положить C = 0.
Если активные составляющие сопротивления изоляции фаз велики, но существенны ёмкости фаз, что обычно имеет место в длинных кабельных линиях, то, положив R в формуле (2), получим:
Ih = 3U C .
В аварийном режиме АР1 переключатель S на эквивалентной схеме электрической сети (рис. 5,б) находится в положении АР1, и эквивалентная схема сети принимает вид, представленный на рис. 6,б. Для данного режима работы электрической сети практически всегда выполняются условия:
Rhп >> Rзм , поэтому Rhп||Rзм Rзм ;
Rзм << |Z|.
Выполнение указанных условий позволяет определить величину I:
(3)
В результате ток через тело человека
(4)
В аварийном режиме АР2 переключатель S на эквивалентной схеме электрической сети (рис. 5,б) находится в положении АР2 и схема сети принимает вид, представленный на рис. 6,в. Принимая во внимание, что в практических условиях обычно выполняется условие |Z| >> Rзм , в схеме на рис. 6,в ветвь, содержащую Z/3, можно исключить. Таким образом, величина тока через тело человека определяется формулой:
Ih UAB /(Rhп + Rзм ) U/Rhп. (5)