
- •1.Техническая термодинамика. Определение. Общие сведения.
- •2.Термодинамическая система. Определение.
- •3.Термодинамический процесс. Работа процесса. I – закон термодинамики.
- •4.Диаграммы термодинамических процессов в pv, ts и hS координатах.
- •5.Уравнение состояния идеального газа (уравнение Менделеева-Клапейрона).
- •6.Термодинамические процессы изменения состояния газа.
- •Изохорные процессы в p - t координатах:
- •Изобарные процессы в V - t координатах
- •Изотермические процессы в p-V координатах
- •7. Смеси идеальных газов.
- •8.Теплоемкость газов.
- •9.Истечение газов.
- •10.Теплообмен. Виды теплообмена.
- •Виды теплообмена:
- •11. Теплопроводность. Основы теории.
- •12. Конвективный теплообмен.
- •13.Факторы влияющие на интенсивность теплообмена.
- •14.Лучистый теплообмен.
- •15.Круговой процесс. Цикл Карно.
- •Цикл Карно и максимальный кпд тепловой машины
- •16.Параметры состояния термодинамической системы (давление, температура, удельный объем).
- •17.Энтальпия. Энтропия. Определение. Физический смысл. Размерность.
- •18.Политропный процесс. Частные случаи политропного процесса.
- •В зависимости от процесса можно определить значение n:
- •20. Уравнение состояния реальных газов.
- •21.Параметры и функции состояния воды и водяного пара.
- •22. Процесс парообразования в pv-координатах.
- •23.Второй закон термодинамики
- •24. Принцип работы турбины.
- •25. Паротурбинные установки. Циклы пту.
- •Циклы паротурбинных установок (пту)
- •26. Газотурбинные установки. Циклы газотурбинных установок (гту)
- •27.Методе повышения экономичности работы паротурбинных и газотурбинных установок.
- •28.Промышленные холодильные установки. Циклы холодильных установок.
- •Циклы холодильных установок
- •29. Теплопередача. Общий вид уравнения.
- •Основное уравнение теплоотдачи
- •30.Цикл Ренкина.
- •Кпд цикла
- •Обратный цикл Ренкина
- •31.Цикл двигателей внутреннего сгорания.
- •Типы двс
- •Газотурбинный двс
- •Двс классифицируют:
- •Циклы работы поршневых двс
- •32.Паросиловые установки. Перегрев пара. Термический кпд. Удельный расход пара.
- •Перегретый пар
- •33.Котельные установки. Типы котлов и конструктивные особенности.
- •34.Котельно-вспомогательное оборудование. Назначение и основные характеристики.
- •35.Тепловой баланс котлоагрегата.
- •36.Конструктивные особенности паровых и водонагревательных котлов.
- •37.Водоподготовка и водный режим паровых водогрейных котлов. Водоподготовка
- •Новыми высокотехнологичными элементами систем водоподготовки являются:
- •38.Топливо. Виды топлив. Общая характеристика.
- •Основные современные виды топлива
- •Жидкие топлива
- •Газообразные топлива
- •Дисперсные системы, растворы
- •Нетипичные топлива
- •39.Процессы горения. Расчет процесса горения.
- •Статическая сирена для процессов горения
- •40.Топки котлов и печей. Классификация и характеристика топочных устройств.
- •Классификация и конструктивные особенности топочных устройств
- •41.Особенности сжигания твердых и газообразных топлив. Особенности горения твердого топлива
- •Особенности сжигания газообразного топлива
- •42.Тепловые электрические станции. Общин сведения.
- •43.Тепловые сети.
- •44.Основные элементы тепловых сетей.
- •45. Расчет тепловых сетей
- •46.Системы теплоснабжения (водяные теплосети).
- •47.Системы пароснабжения. Сбор и возврат конденсата.
- •Сбор и возврат конденсата.
- •Возможные проблемы:
- •48.Режимы работы систем теплоснабжения.
- •49.Температурные графики систем отопления и горячего водоснабжения. Температурный график отопления
- •50.Наладка и регулирования систем теплоснабжения. Наладка систем теплоснабжения
- •Регулирование системы отопления
- •51.Теплообменные аппараты. Основные типы. Конструкция.
- •Основные типы
- •Конструкции теплообменников
- •52.Расчет теплообменных аппаратов.
- •Уравнение теплопередачи:
- •Величину произведения
- •Для аппаратов с прямотоком
- •Для аппаратов с противотоком
- •53.Сушильные установки.
- •54.Промышленные печи.
27.Методе повышения экономичности работы паротурбинных и газотурбинных установок.
Методом повышения экономичности ГТУ является использование тепла отработавших газов для подогрева воздуха, поступающего в камеру сгорания, так называемая регенерация.
Применение регенерации с одновременным двухступенчатым сжатием воздуха повышает эффективный к. п. д. установки до 28—30%. Такие ГТУ находят применение в качестве судовых силовых установок.
В судовой газотурбинной установке с камерой горения (рис.69) атмосферный воздух засасывается, сжимается компрессором низкого давления 1, располагаемым на одном валу с газовой турбиной 5, и направляется в холодильник 2, охлаждаемый забортной водой.
Охлажденный воздух поступает в компрессор высокого давления 3, где снова сжимается до более высокого давления, после чего подается в регенератор 4, откуда подогретый отработавшими газами идет в камеру горения 6, где сгорает подающееся туда топливо. Продукты сгорания расширяются в газовой турбине 5 и через регенератор, отдав в нем часть тепла воздуху, выходят в атмосферу или используются в утилизационном котле.
Энергия, развиваемая в газовой турбине, не полностью используется по основному назначению, а частично расходуется на привод компрессоров. Для запуска газовой турбины ее необходимо раскрутить пусковыми электромоторами.
Газотурбинная установка со свободно-поршневым генератором газа (СПГГ) представляет собой активную или реактивную турбину и дизельный цилиндр, в котором происходит сжигание топлива. Комбинированная газотурбинная установка с СПГГ показана на рис. 70.
Цилиндр СПГГ 1 имеет два рабочих поршня 2 на одних штоках с поршнями компрессоров 3. При сгорании смеси воздуха с топливом, подаваемым через форсунку 11, газы в цилиндре расширяются, раздвигая поршни. В полостях 6 компрессорных цилиндров 5 создается разряжение и через клапаны 7 атмосферный воздух засасывается. Одновременно в полости 4 компрессорных цилиндров воздух сжимается и рабочие поршни возвращаются в исходное положение.
При расхождении поршней в цилиндре открываются сначала выхлопные окна 9, а затем продуваются окна 10. Отработанные газы через выхлопные окна поступают в ресивер 8 и оттуда — в газовую турбину 12.
При обратном ходе компрессорных поршней выхлопные и продувочные окна закрываются, воздух из полости 6 нагнетается в продувочный ресивер, а воздух в рабочем цилиндре сжимается. В конце сжатия температура воздуха поднимается и впрыснутое в этот момент форсункой топливо воспламеняется. Начинается новый цикл работы свободно-поршневого генератора газа.
Эффективный к. п. д. такой комбинированной газотурбинной установки с СПГГ приближается к 40%, что делает выгодной их установку на судах. Газотурбинные установки с СПГГ перспективны и будут широко использоваться на судах в качестве главных двигателей.
28.Промышленные холодильные установки. Циклы холодильных установок.
Холодильные установки – это обширная область специальных знаний, конструкций и способов получения низких температур, от близких к нулю до глубоко отрицательных значений. Эти низкие температуры (холод) создаются в теплоизолированных от окружающей среды объемах (холодильных камерах). Кроме этого назначения, холодильные установки применяются для нагрева воды или воздуха в системах отопления зданий и называются в этом случае тепловыми насосами. Поскольку холодильные установки применяются для охлаждения (понижение потенциала теплоты) и для нагрева (повышения потенциала теплоты) им часто дают общее название – трансформаторы теплоты.
Применяют холодильные установки для сохранения продуктов питания путем их охлаждения или замораживания, для получения жидких газов (кислорода, водорода, азота, гелия и других), находящих применение в различных отраслях, для разделения смеси газов или смеси жидкостей, для проведения производственных химических реакций при низких температурах, для кондиционирования воздуха в административных, общественных и производственных помещениях.
Промышленный холодильник состоит из многоэтажного, реже одноэтажного здания, разделенного на множество холодильных камер, пристроенного одноэтажного машинного зала, автомобильной и железнодорожной погрузочно-разгрузочных платформ.
Холодильники делятся на:
-производственные,
-базисные,
-портовые,
-распределительные,
-транспортные,
-торговые и домашние.
Производственные пищевые холодильники
строят в местах производства и заготовки продуктов питания: мясокомбинатах, молокозаводах, масложиркомбинатах, птицефабриках, рыболовных предприятиях. Для обеспечения высокой производительности предприятий, такие холодильники оснащаются холодильными машинами большой холодопроизводительности и низкой температурой холодильного агента.
Базисные холодильники создаются для накопления резерва продуктов питания. Они получают предварительно охлажденные или замороженные продукты, поэтому их холодильные машины имеют невысокую холодопроизводительность, с более высокой температурой холодильного агента.
Портовые холодильники служат для временного хранения продуктов при их перегрузке с одного вида транспорта на другой. Они имеют высокий уровень механизации погрузо-разгрузочных работ как вне, так и внутри холодильника. Распределительные холодильники строятся в местах потребления продуктов. Здесь прием и выдача продуктов происходит непрерывно.
Такие холодильники, располагая холодом, имеют специальные цеха для производства мороженого, водного льда, твердой углекислоты, фасовки продуктов: масла, мяса и других.
Транспортные холодильники служат для сохранения продуктов при их перевозках. Это железнодорожный, водный, авиационный и автомобильный холодильный транспорт.
Торговые холодильники служат для временного хранения продукции в местах её реализации: торговые базы, магазины, рынки, столовые, рестораны.
Домашние холодильники являются последним элементом этой холодильной цепи. На дверцах домашних холодильников нанесены звездочки *: одна звездочка обозначает, что в морозильном отделении этого холодильника достигается температура минус 6 0С, две – минус 12 0С, три – минус 18 0С.
По величине условной емкости промышленные холодильники делят на малые – до 500 т, средние – до 5000 т и крупные – свыше 50.