
- •Н. А. Колпакова, с. В. Романенко, в. А. Колпаков Физическая химия Часть ιι
- •Глава 1. Термодинамика растворов электролитов
- •1.1. Основные понятия
- •1.2. Средняя ионная активность и средний коэффициент активности
- •1.3. Зависимость коэффициента активности от ионной силы раствора
- •Глава 2. Неравновесные явления в электролитах
- •2.1. Электропроводность растворов электролитов
- •2.1.1. Удельная электрическая проводимость растворов электролитов
- •2.1.2. Молярная электрическая проводимость растворов электролитов
- •2.1.3. Кондуктометрия
- •2.1.4. Примеры решения задач
- •2.1.5. Вопросы для самоконтроля
- •2.2. Электролиз. Числа переноса
- •2.2.1.Примеры решения задач
- •2.2.2. Вопросы для самоконтроля
- •Глава 3. Равновесные электродные процессы. Электродные потенциалы и эдс гальванических элементов. Потенциометрия
- •3.1.Электрохимический потенциал и равновесие на границе электрод/раствор. Условный электродный потенциал. Уравнение Нернста
- •3.2. Потенциалы электродов. Классификация электродов
- •3.2.1. Электроды нулевого рода (окислительно-восстановительные электроды)
- •3.2.2. Электроды первого рода
- •3.2.3. Электроды второго рода
- •3.2.4.Газовые электроды
- •3.3. Гальванические элементы и их эдс
- •3.3.1 Химические цепи
- •3.3.2. Примеры решения задач
- •3.3.2. Вопросы для самоконтроля
- •3.3.3. Концентрационные цепи
- •3.3.3.Примеры решения задач
- •3.3.4. Вопросы для самоконтроля
- •3.4. Экспериментальное определение эдс
- •3.5. Термодинамика обратимых электрохимических систем
- •3.5.1. Потенциометрия
- •3.5.2. Примеры решения задач
- •3.5.3. Вопросы для самоконтроля
- •Глава 4. Химическая кинетика
- •4.1. Основные понятия химической кинетики
- •4.2. Скорость химической реакции
- •4.2.1. Скорость химических реакций в закрытых системах
- •4.2.2. Скорость химических реакций в открытых системах
- •4.2.3. Факторы, влияющие на скорость реакции
- •4.3. Основной постулат химической кинетики. Закон действующих масс
- •Вопросы и задания для самоконтроля
- •4.4. Формальная кинетика
- •4.4.1. Формальная кинетика элементарных и формально простых гомогенных односторонних реакций в закрытых системах
- •4.4.1.2. Кинетика односторонних химических реакций второго порядка
- •4.4.1.3. Кинетика односторонних химических реакций третьего порядка
- •4.4.1.4. Кинетика односторонних химических реакций нулевого порядка
- •4.4.1.5.Примеры решения задач
- •4.4.2. Методы определения порядка реакций
- •4.4.2.1. Метод избыточных концентраций
- •4.4.2.2. Дифференциальные методы определения порядка реакции
- •1). Графический метод решения.
- •2). Аналитический метод решения.
- •3) Метод начальных скоростей Вант–Гоффа.
- •2). Графический метод решения.
- •4.4.2.3. Интегральные методы определения порядка реакции
- •1)Аналитический метод решения.
- •2) Графический метод решения
- •1). Аналитический метод решения.
- •2. Графический метод решения
- •4.5. Зависимость константы скорости реакции от температуры
- •4.5.1. Примеры решения задач
- •Вопросы и задания для самоконтроля.
- •4.6. Кинетика сложных реакций
- •4.6.1 Кинетика двусторонних (обратимых) химических реакций
- •4.6.2. Кинетика параллельных химических реакций
- •4.6.3. Кинетика последовательных химических реакций
- •4.6.4. Стационарное и квазистационарное протекание реакций
- •4.7. Кинетика химических реакций в открытых системах
- •4.7.1. Кинетика химических реакций в реакторе идеального смешения
- •4.7.2. Кинетика химических реакций в реакторе идеального вытеснения
- •4.8. Кинетика цепных реакций
- •4.8.1. Кинетика неразветвленных цепных реакций
- •4.8.2. Кинетика цепных реакций с разветвленными цепями
- •4.8.3. Примеры решения задач.
- •4.9. Кинетика фотохимических реакций
- •4.9.1. Примеры решения задач
- •4.10. Теории химической кинетики
- •4.10.1. Теория активных столкновений
- •4.10.2. Теория активированного комплекса
- •4.10.2.1 Термодинамический аспект теории активированного комплекса.
- •5.2.2. Примеры решения задач.
- •2 См3/(моль·с).
- •Глава 5. Катализ
- •5.1. Основные понятия и особенности катализа
- •Вопросы для самоконтроля
- •5.2. Классификация каталитических процессов
- •5.3. Свойства катализаторов.
- •3. Соотношения линейности Бренстеда-Поляни в катализе
- •Вопросы для самоконтроля
- •5.4 Механизмы гомогенных каталитических реакций
- •Вопросы для самоконтроля
- •5.5. Примеры гомогенных каталитических реакций
- •5.5.1. Кислотно-основной катализ
- •5.5.1.1. Кинетика кислотного катализа.
- •5.5.1.2. Кинетика основного катализа
- •5.5.1.3. Примеры решения задач
- •5.5.2 Катализ комплексными соединениями
- •Вопросы для самоконтроля
- •5.5.3. Ферментативный катализ
- •5.5.3.1. Кинетика ферментативных реакций
- •5.5.3.2. Влияние ингибиторов на кинетику ферментативных реакций
- •5.5.3.3. Примеры решения задач.
- •Вопросы для самоконтроля
- •5.6. Гетерогенный катализ
- •5.6.1. Свойства гетерогенных катализаторов
- •5.6.2. Приемы повышения каталитической активности катализаторов
- •5.5.2.1. Использование в катализе носителей
- •5.6.2.2. Использование в катализе промоторов
- •5.6.2.3. Каталитические яды
- •5.6.2.4. Смешанные катализаторы
- •5.6.3. Основные стадии гетерогенно-каталитических реакций
- •5.6.4. Порядки гетерогенно-каталитических реакций
- •5.6.5. Решение кинетических задач для гетерогенно-каталитических процессов
- •5.6.5.1. Примеры решения задач
- •5.6.6. Теории гетерогенного катализа
- •Содержание
- •Глава 5. Катализ 141
- •Физическая химиЯ Часть ιι
4.4.2.2. Дифференциальные методы определения порядка реакции
При расчетах этим способом используются расчетные данные для зависимости скорости реакции от времени. На опыте получают зависимость концентрации от времени (кинетическую кривую). Скорость реакции определяется по графику этой зависимости при помощи графического дифференцирования. Тангенс угла наклона касательных, проведенных в разных точках к кинетической кривой, равен производной от концентрации по времени, т. е. равен скорости реакции по данному веществу в данный момент времени. Скорость реакции по данному веществу, например по веществу (остальные вещества взяты в избытке) равна
.
(4.51)
1). Графический метод решения.
Прологарифмировав уравнение (4.51), получим
(4.52)
На графике в
координатах
опытные точки для различных моментов
времени, в случае справедливости
уравнения (4.52),
должны располагаться на прямой линии.
Отрезок на оси ординат на этом графике
дает значение
а тангенс угла наклона прямой равен
порядку реакции
по веществу
.
Точно также можно определить
и
.
Если точки найденные по опытным данным, не располагаются на прямой, то это указывает на то, что уравнение не соответствует опытным данным, т. е. скорость реакции зависит от концентрации рассматриваемого вещества по более сложной зависимости.
Если скорость реакции заменить на
отношение конечных разностей
,
то получим соотношение:
,
(4.53)
где
– среднее изменение концентрации
вещества А за период времени
;
– средняя за данный промежуток времени
концентрация реагирующего вещества.
Тогда, порядок реакции можно определить
следующим образом. Проводим несколько
опытов, где измеряем
через разные или равные интервалы
времени (
1).
График, построенный в координатах
)–
ln
,
представляет собой прямую линию. Тангенс
угла наклона этой прямой равен порядку
химической реакции: tgα=
.
2). Аналитический метод решения.
Из кинетической кривой или из таблицы
экспериментальных данных выбираем два
временных интервала и соответствующие
им значения
.
Используя уравнение (4.53) получим
, (4.54)
.
Вычитая первое уравнение из второго, получаем
. (4.55)
Таким образом, порядок реакции можно оценить по зависимости изменения концентрации реагирующего вещества за определенный промежуток времени: Если промежутки времени для наблюдения за изменением концентрации одинаковы, то расчетная формула (4.55) упрощается:
. (4.56)
3) Метод начальных скоростей Вант–Гоффа.
Уравнение (4.53) для начальной скорости можно записать:
. (4.57)
Порядок реакции по методу Вант–Гоффа можно найти двумя способами, решая задачу аналитически и графически.
1). Аналитический метод решения. Порядок реакции можно рассчитать, используя две начальные скорости для двух разных начальных концентраций реагентов
. (4.58)
2). Графический метод решения.
На основании опытных данных строят график зависимости ln v0 – ln C0, представляющий прямую линию. Тангенс угла наклона этой прямой равен порядку химической реакции (tgα= ).
Достоинством дифференциальных способов является простота расчета и возможность определять дробный порядок химической реакции.
Несовпадение порядка реакции, определенного по начальным скоростям и по скоростям в любые другие промежутки времени, возможно при наличии ингибирования процесса каким–либо веществом или наличием автокатализа, т.е. сложным характером протекания процесса.