Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Teoria-Lin_Al.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
10.79 Mб
Скачать

6. Теорема о среднем значении (док-во).

Если f(x) - непрерывная функция, заданная на промежутке [a, b], то существует такая точка , что (14). В самом деле, пусть M и m наибольшее и наименьшее значения f(x) на промежутке [a, b]. Составим для f(x) какую-нибудь интегральную сумму

Так как при всех k будет m ≤ f(ξk) ≤ M, а xk+1 > xk, то m(xk+1 - xk) ≤ M(xk+1 - xk). Складывая такие неравенства и замечая, что , получим m(b - a) ≤ σ ≤ M(b - a). Переходя в этом неравенстве к пределу при λ → 0, приходим после деления на b - a к новому неравенству Таким образом, частное есть число, лежащее между наибольшим и наименьшим значениями непрерывной функции. Как известно, тогда и само это число должно являться одним из значений той же функции. Поэтому в [a, b] обязательно существует такая точка ξ, что h = f(ξ), а это равносильно равенству (14). Заметим, что равенство (14) справедливо не только при a < b, но и при a = b (тогда обе части этого равенства нули), а также и при a> b (этот случай приводится к рассмотренному изменением знаков). В первом из этих случаев будет ξ = a, а во втором a ≥ ξ ≥ b.

7. Определенный интеграл как функция верхнего предела (док-во).

Значение определённого интеграла не зависит от того, какой буквой обозначена переменная интегрирования: (чтобы убедиться в этом, достаточно выписать интегральные суммы, они совпадают). В этом разделе переменную интегрирования будем обозначать буквой t, а буквой x обозначим верхний предел интегрирования. Будем считать, что верхний предел интеграла может меняться, т.е. что x - переменная, в результате интеграл будет функцией Ф(x) своего верхнего предела: . Легко доказать, что если f(t) интегрируема, то Ф(x) непрерывна, но для нас важнее следующая фундаментальная теорема:

Теорема об интеграле с переменным верхним пределом. Если функция f(t) непрерывна в окрестности точки t = x, то в этой точке функция Ф(x) дифференцируема, и .

Другими словами, производная определённого интеграла от непрерывной функции по верхнему пределу равна значению подынтегральной функции в этом пределе.

Док-во. Дадим верхнему пределу x приращение . Тогда , где c - точка, лежащая между x и (существование такой точки утверждается теоремой о среднем; цифры над знаком равенства - номер применённого свойства определённого интеграла). . Устремим . При этом (c- точка, расположенная между x и ). Так как f(t) непрерывна в точке t = x, то . Следовательно, существует , и . Теорема доказана.

Отметим первое важное следствие этой теоремы. По существу, мы доказали, что любая непрерывная функция f(x) имеет первообразную, и эта первообразная определяется формулой . Другим важным следствием этой теоремы является формула Ньютона-Лейбница, или основная формула интегрального исчисления.

8. Формула Ньютона-Лейбница (док-во).

Определенный интеграл от непрерывной функции равен разности значений любой ее первообразной, вычисленных для для верхнего и нижнего пределов интегрирования:

Док-во: пусть есть некоторая первообразная для функции на отрезке [a, b]. С другой стороны, в п. 5. 4. установлено, что одной из первообразных для на отрезке [a, b] является функция , так как для нее справедливо равенство (16). Известно, что две любые первообразные от данной функции отличаются друг от друга на постоянное слагаемое С: , (18). При соответствующем выборе С равенство (18) справедливо при всех значениях .Подставим в него значение : Следовательно, для любого значения Полагая в последнем равенстве х=б , получим .Заменим переменную Т на более привычную Х . Разность принято условно записывать в виде . Формула

выражающая определенный интеграл от непрерывной функции через неопределенный, называется формулой Ньютона –Лейбница.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]