
- •1.1 Элементы кинематики
- •1.2 Элементы динамики частиц.
- •I)в классической механике:
- •Утверждение:
- •Основная физическая интерпретация:
- •[Править]Вывод уравнений Гамильтона [править]Вывод из принципа стационарного действия
- •II)в классической статистической механике:
- •3) Уравнение Лиувилля:
- •Физическая интерпретация:
- •4)Уравне́ние Бо́льцмана
- •Формулировка:
- •III)в квантовой механике:
- •Формулировка: Общий случай:
- •Случай трёхмерного пространства:
- •Границы применимости классической механики
- •1.3 Закон сохранения импульса
- •1.4. Элементы механики твердого тела
- •1.5. Принцип относительности в механике
- •1.6. Элементы релятивистской механик
- •Первый постулат Эйнштейна: никакими физическими опытами, производимыми внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется прямолинейно и равномерно.
- •1. Сокращение длинны движущихся объектов:
- •2. Замедление движущихся часов:
- •3. Закон сложения скоростей:
- •2. Механика колебаний и волн.
- •2.1.Кинематика гармонических колебаний.
- •2.2. Гармонический осциллятор
- •2.3. Волновые процессы. Скорость движения частиц упругой среды- это частная производная от смещения по времени, т.Е.
- •3. Статистическая физика и термодинамика.
- •3.1. Элементы молекулярно-кинетической теории
- •3.2.Статистические распределения
- •3.3. Явление переноса
- •1 . Теплопроводность.
- •Коэффициент теплопроводности
- •3.4.Элементы термодинамики
- •Следствия: Недостижимость абсолютного нуля температур
- •Поведение термодинамических коэффициентов
- •Нарушения третьего начала термодинамики в моделях
- •3.5.Реальные газы, жидкости и кристаллы. Межмолекулярное взаимодействие
- •Классификация твёрдых тел
- •Классификация решёток по симметрии
Границы применимости классической механики
В настоящее время известно три типа ситуаций, в которых классическая механика перестаёт отражать реальность.
1)Свойства микромира не могут быть поняты в рамках классической механики. В частности, в сочетании с термодинамикой она порождает ряд противоречий (см.Классическая механика). Адекватным языком для описания свойств атомов и субатомных частиц является квантовая механика. Подчеркнём, что переход от классической к квантовой механике — это не просто замена уравнений движения, а полная перестройка всей совокупности понятий (что такое физическая величина, наблюдаемое, процесс измерения и т. д.)
2)При скоростях, близких к скорости света, классическая механика также перестаёт работать, и необходимо переходить к специальной теории относительности. Опять же, этот переход подразумевает полный пересмотр парадигмы, а не простое видоизменение уравнений движения. Если же, пренебрегая новым взглядом на реальность, попытаться всё же привести уравнение движения к виду F = ma, то придётся вводить тензор масс, компоненты которого растут с ростом скорости. Эта конструкция уже долгое время служит источником многочисленных заблуждений, поэтому пользоваться ей не рекомендуется.
3)Классическая механика становится неэффективной при рассмотрении систем с очень большим числом частиц (или же большим числом степеней свободы).
Инерциа́льная систе́ма отсчёта (ИСО) — система отсчёта, в которой справедлив закон инерции: любое тело, на которое не действуют внешние силы или действие этих сил компенсируется, находится в состоянии покоя или равномерного прямолинейного движения.
Всякая система отсчёта, движущаяся относительно ИСО равномерно и прямолинейно, также является ИСО. Согласно принципу относительности, все ИСО равноправны, и всезаконы физики инвариантны относительно перехода из одной ИСО в другую. Это значит, что проявления законов физики в них выглядят одинаково, и записи этих законов имеют одинаковую форму в разных ИСО.
Неинерциа́льная систе́ма отсчёта — произвольная система отсчёта, не являющаяся инерциальной. Примеры неинерциальных систем отсчета: система, движущаяся прямолинейно с постоянным ускорением, а также вращающаяся система.
При рассмотрении уравнений движения тела в неинерциальной системе отсчета необходимо учитывать дополнительные силы инерции. Законы Ньютона выполняются только в инерциальных системах отсчёта. Для того, чтобы найти уравнение движения в неинерциальной системе отсчёта, нужно знать законы преобразования сил и ускорений при переходе от инерциальной системы к любой неинерциальной.
Классическая механика постулирует следующие два принципа:
1)время абсолютно, то есть промежутки времени между любыми двумя событиями одинаковы во всех произвольно движущихся системах отсчёта;
2)пространство абсолютно, то есть расстояние между двумя любыми материальными точками одинаково во всех произвольно движущихся системах отсчёта.
Эти два принципа позволяют записывать уравнение движения материальной точки относительно любой неинерциальной системы отсчёта, в которой не выполняется Первый закон Ньютона.
Основное уравнение динамики относительного движения материальной точки имеет вид:
,
где
— масса тела,
—
ускорение тела относительно неинерциальной
системы отсчёта,
—
сумма всех внешних сил, действующих на
тело,
— переносное
ускорение тела,
— кориолисово
ускорение тела.
Это уравнение может быть записано в привычной форме Второго закона Ньютона, если ввести фиктивные силы инерции:
1)
—
переносная сила инерции
2)
— сила
Кориолиса