
- •1.1 Элементы кинематики
- •1.2 Элементы динамики частиц.
- •I)в классической механике:
- •Утверждение:
- •Основная физическая интерпретация:
- •[Править]Вывод уравнений Гамильтона [править]Вывод из принципа стационарного действия
- •II)в классической статистической механике:
- •3) Уравнение Лиувилля:
- •Физическая интерпретация:
- •4)Уравне́ние Бо́льцмана
- •Формулировка:
- •III)в квантовой механике:
- •Формулировка: Общий случай:
- •Случай трёхмерного пространства:
- •Границы применимости классической механики
- •1.3 Закон сохранения импульса
- •1.4. Элементы механики твердого тела
- •1.5. Принцип относительности в механике
- •1.6. Элементы релятивистской механик
- •Первый постулат Эйнштейна: никакими физическими опытами, производимыми внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется прямолинейно и равномерно.
- •1. Сокращение длинны движущихся объектов:
- •2. Замедление движущихся часов:
- •3. Закон сложения скоростей:
- •2. Механика колебаний и волн.
- •2.1.Кинематика гармонических колебаний.
- •2.2. Гармонический осциллятор
- •2.3. Волновые процессы. Скорость движения частиц упругой среды- это частная производная от смещения по времени, т.Е.
- •3. Статистическая физика и термодинамика.
- •3.1. Элементы молекулярно-кинетической теории
- •3.2.Статистические распределения
- •3.3. Явление переноса
- •1 . Теплопроводность.
- •Коэффициент теплопроводности
- •3.4.Элементы термодинамики
- •Следствия: Недостижимость абсолютного нуля температур
- •Поведение термодинамических коэффициентов
- •Нарушения третьего начала термодинамики в моделях
- •3.5.Реальные газы, жидкости и кристаллы. Межмолекулярное взаимодействие
- •Классификация твёрдых тел
- •Классификация решёток по симметрии
III)в квантовой механике:
5) Уравне́ние Шрёдингера — уравнение, описывающее изменение в пространстве и во времени чистого состояния, задаваемого волновой функцией, в гамильтоновых квантовых системах. Играет в квантовой механике такую же важную роль, как уравнение второго закона Ньютона в классической механике. Его можно назвать уравнением движения квантовой частицы. Установлено Эрвином Шрёдингером в1926 году.
Уравнение Шрёдингера предназначено для частиц без спина, движущихся со скоростями много меньшими скорости света. В случае быстрых частиц и частиц со спином используются его обобщения (уравнение Клейна — Гордона, уравнение Паули, уравнение Дирака и др.)
Формулировка: Общий случай:
В квантовой
физике вводится комплекснозначная
функция
,
описывающая чистое состояние объекта,
которая называется волновой
функцией.
В наиболее распространеннойкопенгагенской
интерпретации эта
функция связана с вероятностью обнаружения
объекта в одном из чистых состояний
(квадрат модуля волновой функции
представляет собойплотность
вероятности).
Поведение гамильтоновой системы в
чистом состоянии полностью описывается
с помощью волновой функции.
Отказавшись от описания движения частицы с помощью траекторий, получаемых из законов динамики, и определив вместо этого волновую функцию, необходимо ввести в рассмотрение уравнение, эквивалентное законам Ньютона и дающее рецепт для нахождения в частных физических задачах. Таким уравнением является уравнение Шрёдингера.
Пусть волновая
функция задана
в N-мерном пространстве, тогда в каждой
точке с координатами
,
в определенный момент времени t она
будет иметь вид
.
В таком случае уравнение Шрёдингера
запишется в виде:
где
,
— постоянная
Планка;
—
масса частицы,
—
внешняя по отношению к частице потенциальная
энергия в
точке
,
—оператор
Лапласа (или
лапласиан), эквивалентен квадрату оператора
набла и
в n-мерной системе координат имеет вид:
Случай трёхмерного пространства:
В трёхмерном случае
пси-функция является функцией трёх
координат и
в
декартовой системе координат заменяется
выражением
тогда уравнение Шрёдингера примет вид:
где
,
— постоянная
Планка;
—
масса частицы,
—
потенциальная энергия в точке
Состояние частицы в классической механике задаётся радиус-вектором и импульсом.
Ра́диус-ве́ктор (обычно
обозначается
или
просто
)
— вектор,
задающий положения точки в пространстве относительно
некоторой заранее фиксированной точки,
называемой началом координат.
И́мпульс (Количество движения) — векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этой точки на её скорость v, направление импульса совпадает с направлением вектора скорости:
.
Динамика изучает движения тел и причины, вызывающие это движение.
Чтобы решить основную задачу механики, необходимо выбрать рациональную систему отсчета и выяснить причины возникновения ускорений. Раздел механики, где решаются эти задачи называется динамикой. Механику, основанную на законах Ньютона называют классической механикой.
Масса – мера количества вещества. F=ma, F=G * m1 * m2 * / R*R
Импульс тела – количество движения. P = m v (вектор) – справедливо для матерьяльной точки. Если тело имеет конечный размер, то импульс этого тела можно найти как векторную сумму импульсов матерьяльных точек, на которое можно разбить это тело. P – импульс.
Сила – мера взаимодействия тел друг с другом. 4 вида взаимодействий:
1. Гравитационное – взаимодействие притяжения 2х тел, обладающих массой.
2. Слабые взаимодействия – ответственно за некоторые виды распада элементарных частиц, в частности за бета-распад.
3. Электро-магнитные взаимодействия – кулоновская и лоренцева силы.
4. Сильное взаимодействие – обеспечивает связь нуклонов в ядре. Закон всемирного тяготения:
F=G m1 m2 / R * R; Fk = (1 / 4ПИ * Rнулевое) * (E1 E2 / R * R);
Fл = kq[v,b (векторы)]
1 закон Ньютона: Если на тело не действуют никакие силы или равнодействующая всех сил равна нулю, то тело находится в состоянии покоя или равномерного прямолинейного движения. Согласно этому закону всякое тело, не подверженное внешнему воздействию находится в покое, либо движется равномерно и прямолинейно.
Первый закон выполняется только в инерциальных системах отсчета. В инерциальных системах отсчета ускорение тела может быть вызвано только его взаимодействием с другими телами.
Второй закон Ньютона: скорость изменения импульса тела равна действующей на него силе:
.Если
масса тела остается постоянной, то
ускорение, приобретаемое телом
относительно инерциальной системы
отсчета, прямо пропорционально действующей
на него силе и обратно пропорционально
массе тела:
.
3 закон Ньютона: 2 тела действуют друг на друга с силами, направленными вдоль одной прямой. Эти силы равны по величине и противоположны по направлению. 3-ий закон позволяет перейти от динамики отдельной матерьяльной точки к динамике системы матерьяльных точек. Это следует из того, что и для сист.мат. точек взаимодействия этих матерьяльных точек сводятся к парным взаимодействиям.
где
–
сила, действующая на первое тело со
стороны второго,
–
сила,
действующая на второе тело со стороны
первого.
Из третьего закона следует, что в любой механической системе материальных точек геометрическая сумма всех внутренних сил (т.е. сил, с которыми взаимодействуют между собой материальные точки системы) равна нулю.