
- •1.1 Элементы кинематики
- •1.2 Элементы динамики частиц.
- •I)в классической механике:
- •Утверждение:
- •Основная физическая интерпретация:
- •[Править]Вывод уравнений Гамильтона [править]Вывод из принципа стационарного действия
- •II)в классической статистической механике:
- •3) Уравнение Лиувилля:
- •Физическая интерпретация:
- •4)Уравне́ние Бо́льцмана
- •Формулировка:
- •III)в квантовой механике:
- •Формулировка: Общий случай:
- •Случай трёхмерного пространства:
- •Границы применимости классической механики
- •1.3 Закон сохранения импульса
- •1.4. Элементы механики твердого тела
- •1.5. Принцип относительности в механике
- •1.6. Элементы релятивистской механик
- •Первый постулат Эйнштейна: никакими физическими опытами, производимыми внутри инерциальной системы отсчета, невозможно установить, покоится эта система или движется прямолинейно и равномерно.
- •1. Сокращение длинны движущихся объектов:
- •2. Замедление движущихся часов:
- •3. Закон сложения скоростей:
- •2. Механика колебаний и волн.
- •2.1.Кинематика гармонических колебаний.
- •2.2. Гармонический осциллятор
- •2.3. Волновые процессы. Скорость движения частиц упругой среды- это частная производная от смещения по времени, т.Е.
- •3. Статистическая физика и термодинамика.
- •3.1. Элементы молекулярно-кинетической теории
- •3.2.Статистические распределения
- •3.3. Явление переноса
- •1 . Теплопроводность.
- •Коэффициент теплопроводности
- •3.4.Элементы термодинамики
- •Следствия: Недостижимость абсолютного нуля температур
- •Поведение термодинамических коэффициентов
- •Нарушения третьего начала термодинамики в моделях
- •3.5.Реальные газы, жидкости и кристаллы. Межмолекулярное взаимодействие
- •Классификация твёрдых тел
- •Классификация решёток по симметрии
Физическая интерпретация:
Ожидаемое полное число частиц — интеграл по всему фазовому пространству от функции распределения:
(Нормировочный
множитель обычно включается в меру
фазового пространства, но здесь опущен.)
В простейшем случае, когда частица
движется в евклидовом пространстве в
поле потенциальных сил
с
координатами
и
импульсами
,
теорему Лиувилля можно записать в виде
где
—
скорость. В физике плазмы это выражение
называется уравнением
Власова или
бесстолкновительным уравнением
Больцмана, и используется, чтобы описать
большое число бесстолкновительных
частиц, двигающихся в самосогласованном
поле сил
.
В
классической статистической механике
число частиц N огромно,
(обычно по порядку величины число
Авогадро,
в лабораторных условиях). Полагая,
что
даёт
уравнение для стационарных состояний
системы, можно найти плотность
микросостояний доступных в
данном статистическом
ансамбле.
Уравнение для стационарных состояний
удовлетворяет выражению ρ равно
любой функции гамильтониана H:
в частности, распределению
Максвелла-Больцмана
,
где T — температура, k —постоянная
Больцмана.
4)Уравне́ние Бо́льцмана
(кинети́ческое уравнение Больцмана) — уравнение, названное по имени Людвига Больцмана, который его впервые рассмотрел, и описывающеестатистическое распределение частиц в газе или жидкости. Является одним из самых важных уравнений физической кинетики (области статистической физики, которая описывает системы, далёкие от термодинамического равновесия, например, в присутствии градиентов температур и электрического поля). Уравнение Больцмана используется для изучения переноса тепла и электрического заряда в жидкостях и газах, и из него выводятся транспортные свойства, такие как электропроводность, эффект Холла, вязкостьи теплопроводность. Уравнение применимо для разреженных систем, где время взаимодействия между частицами мало (гипотеза молекулярного хаоса).
Формулировка:
Уравнение Больцмана описывает эволюцию во времени (t) функции распределения плотности f(x, p, t) в одночастичном фазовом пространстве, где x и p — координата иимпульс соответственно. Распределение определяется так, что
пропорционально числу частиц в фазовом объёме d³x d³p в момент времени t. Уравнение Больцмана
Здесь F(x, t) — поле сил, действующее на частицы в жидкости или газе, а m — масса частиц. Слагаемое в правой части уравнения добавлено для учёта столкновений между частицами и называется интегралом столкновений. Если оно равно нулю, то частицы не сталкиваются вовсе. Этот случай часто называют уравнением Лиувилля. Если поле силF(x, t) заменить подходящим самосогласованным полем, зависящим от функции распределения f, то получим уравнение Власова, описывающее динамику заряженных частиц плазмы в самосогласованном поле. Классическое же уравнение Больцмана используется в физике плазмы, а также в физике полупроводников и металлов (для описания кинетических явлений, то есть переноса заряда или тепла, в электронной жидкости).
В гамильтоновой механике уравнение Больцмана часто записывается в более общем виде
,
где L —
оператор Лиувилля, описывающий эволюцию
объёма фазового пространства и C —
столкновительный оператор. Нерелятивистская
форма L
а
в общей
теории относительности
где Γ — символ Кристоффеля.