Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора-колонки.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
1.54 Mб
Скачать

Коэффициент теплопроводности

численная характеристика теплопроводности материала, равная количеству теплоты, проходящей через материал толщиной 1 м и площадью 1 кв.м за час при разности температур на двух противоположных поверхностях в 1 град.C. 

Вязкость

Вязкое трение в газе или жидкости  это результат переноса импульса направленного движения. Механизм возникновения внутреннего трения между слоями газа (жидкости), движущимися с различными скоростями, заключается в том, что из-за хаотического теплового движения происходит обмен молекулами между слоями, в результате чего импульс слоя, движущегося быстрее, уменьшается, движущегося медленнее  увеличивается, что приводит к появлению сил вязкого трения. Внутреннее трение подчиняется закону Ньютона: «Плотность потока импульса направленного движения (равная силе вязкого трения, действующей на единичную площадку, перпендикулярную направлению переноса) пропорциональна градиенту скорости направленного движения»:

,

г де   динамическая вязкость (коэффициент вязкости),  градиент скорости направленного движения. Знак минус указывает, что сила трения направлена против скорости u. Коэффициент вязкости для идеального газа

.

Сила F, действующая на площадь S, пропорциональна этой площади и градиенту скорости :

.

Коэффициенты переноса связаны между собой простыми соотношениями

3.4.Элементы термодинамики

Вну́тренняя эне́ргия тела (обозначается как E или U) — полная энергия этого тела за вычетом кинетической энергии тела как целого ипотенциальной энергии тела во внешнем поле сил. Следовательно, внутренняя энергия складывается из кинетической энергии хаотическогодвижения молекул, потенциальной энергии взаимодействия между ними и внутримолекулярной энергии.

Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности между ее значениями в конечном и начальном состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

где  — подведённая к телу теплота, измеренная в джоулях  — работа, совершаемая телом против внешних сил, измеренная в джоулях

Эта формула является математическим выражением первого начала термодинамики

Термодинамический процесс – это переход термодинамической системы из одного состояния в другое. Термодинамический процесс называется обратимым, если после него можно возвратить систему в исходное состояние, при этом в исходное состояние должны вернуться и все тела, взаимодействующие с системой. Процесс, который не удовлетворяет этим условиям называется необратимым. Необходимым условием обратимого процесса является его равновестность, однако не всякий равновестный процесс обратим.

Работа газа при изменении объема.

Найдем работу, совершаемую газом при изменении его объема. Рассмотрим газ, находящийся под поршнем в цилиндрическом сосуде (рис. 17).

Если газ, расширяясь, передвигает поршень на расстояние dx, то он производит работу против сил внешнего давления ре:

,где S  площадь поршня, dV  изменение объема газа. Полная работа А12, совершаемая газом при изменении его объема от V1 до V2:

.

Если процесс расширения газа является равновесным, т.е. идущим без перепадов давлений и температур, то работа может быть вычислена через давление самого газа (ре=р). Графически работа газа равна площади под кривой процесса на диаграмме PV (рис.18). Если газ совершает круговой процесс (цикл), то работа будет равна площади цикла.

Работа газа при изопроцессах:

1) изохорический

V=const, dV=0, A12=0;

2) изотермический T=const,

;

3) изобарический р=const,

Эквиваленты теплоты и работы. Обмен энергией между термодинамической системой и внешними телами может осуществляться 2мя качественно различными способами: путем совершения работы и путем теплообмена. В отсутствии внешних полей работа совершается при изменении объема или формы системы. Работа A’, совершаемая внешнми телами над системой численно равна и противоположна по знаку работе, совершаемой самой системой.

Первое начало термодинамики или первый закон термодинамики.

dQ = dU + dA ; Теплота, подводимая к термодинамической системе идет на изменение внутренней энергии и на совершение работы.

Внутренняя энергия U определяется только состоянием термодинамической системы, а Q и A являются характеристиками процесса при котором система переходит из одного состояния в другое. Переход системы из одного состояния в другое может осуществляться различными путями, поэтому Q и A зависят от способа перехода системы из одного состояния в другое, в то время, как внутренняя энергия U определяется только состоянием системы и не зависит от того, каким путем система перешла в это состояние.

Изменение внутренней энергии зависит только от начального и конечного состояний системы. Работа и количество тепла зависят от вида процесса, переводящего систему из начального состояния в конечное, т.е. они не являются функциями состояния системы.

Если система периодически возвращается в первоначальное состояние, то U=0 и A=Q, т.е. нельзя построить вечный двигатель, который совершал бы большую по величине работу, чем количество сообщенной ему извне энергии.

По форме обмена энергией можно выделить три вида систем:

1) изолированные (Q=0, A=0),

2) теплоизолированные (адиабатические) (Q=0, A0),

3) тепловые резервуары (A=0, Q0).

Закон равнораспределения энергии по степеням свободы молекул

Молекулы можно рассматривать как системы материальных точек (атомов) совершающих как поступательное, так и вращательное движения. При исследовании движения тела необходимо знать его положение относительно выбранной системы координат. Для этого вводится понятие о степенях свободы тела. Число независимых координат, которые полностью определяют положение тела в пространстве, называется числом степеней свободы тела.

При движении точки по прямой линии для оценки ее положения необходимо знать одну координату, т.е. точка имеет одну степень свободы. Если точка движения по плоскости, ее положение характеризуется двумя координатами; при этом точка обладает двумя степенями свободы. Положение точки в пространстве определяется 3 координатами. Число степеней свободы обычно обозначают буквой i. Молекулы, которые состоят из обычного атома, считаются материальными точками и имеют три степени свободы (аргон, гелий).

Двухатомные жесткие молекулы, например молекулы водорода, азота и др., обладают пятью степенями свободы: они имеют 3 степени свободы поступательного движения и 2 степени свободы вращения вокруг осей ОХ и OZ. Вращением вокруг оси OY можно пренебречь, т.к. момент инерции ее относительно этой оси пренебрежимо мал. Поэтому вклад энергии вращательного движения вокруг оси OY в суммарную энергию двухатомной молекулы можно не учитывать.

Молекулы, состоящие из трех и более жестко связанных атомов, не лежащих на одной прямой, имеют число степеней свободы i = 6: три степени свободы поступательного движения и 3 степени свободы вращения вокруг осей ОХ, OY и OZ.

В этом случае, если расстояние между атомами может изменяться (нежесткие молекулы), появляются дополнительные степени свободы .

Согласно молекулярно-кинетической теории газов движение молекул носит беспорядочный характер; эта беспорядочность относится ко всем видам движения молекулы. Ни один из видов движения не имеет преимущества перед другим. При статистическом равновесии движений энергия в среднем распределяется равномерно между всеми видами движения. Закон равномерного распределения энергии по степеням свободы молекул можно сформулировать следующим образом: статистически в среднем на каждую степень свободы молекул приходится одинаковая энергия. Поступательное движение молекул характеризуется средней кинетической энергией, равной   . Так как поступательному движению соответствует 3 степени свободы, то в среднем на одну степень свободы движения молекул приходится энергия

В однородном газе, молекулы которого имеют любое число степеней свободы i, каждая молекула в среднем обладает энергией движения, равной

Применение 1-го начала термодинамики к изопроцессам и адиабатическому процессу.

1) V = const изохорный => dV=0 ; d = PdV=0 ; dQ=dU ; dU = МЮ dUмол = МЮ Cv dT ;

dQ= МЮ Cv dT ; Q = (интеграл T1 – T2) МЮ Cv dT = МЮ Cv (T2 – T1) – m Cv (T2 – T1)/ μ

2) T = const изотермический => dT= 0 ; dQ= МЮ Cv dT = 0 ; dQ = dA ;

dA = PdV ; PV = МЮ RT ; P= МЮ RT / V ; dA = МЮ RT dV / V ;

A = (интеграл V1 – V2) МЮ RTdV / V = МЮ RT (интеграл V1 – V2) dV/ V = МЮ RT ln (V2/ V1) = МЮ RT ln (P1/ P2) ; P1 V1 = P2 V2 ;

3) P = const изобарический => dQ = PdV ; A = (интеграл V1 – V2) PdV = P (V2 – V1) ; A = P (V2 – V1) ; dU = МЮ Cv dT ; PdV = МЮ RdT ; dQ = МЮ Cv dT + МЮ Rdt = МЮ (Cv + R) dT ; Q = МЮ Cp (T2 – T1) ;

4) Q = const Адиабатный dA = dU ; dA = МЮ Cv dT ; PdV = - МЮ Cv dT ; PV = МЮ RT – продифференцированное уравнение Менделеева-Клайперона ; PdV + VdP = МЮ R dT ; … ; lnP = - γ lnP + const ; γ – коэффициент Пуассона ; lnP + lnV (ст. γ) = const ; PV (ст. γ) = const ; (график такой же как и изотермический, только чуть выше вверх).

dA = - dU = - МЮ Cv dT ; A = - (интеграл T1 – T2) МЮ Cv dT = МЮ Cv (T1 – T2) ;

Адиабатический процесс

Адиабатическим называется процесс, при котором отсутствует теплообмен

(Q = 0) между физической системой и окружающей средой. Близкими к адиабатическим являются все быстропротекающие процессы. Из первого начала термодинамики для адиабатического процесса следует, что , т.е. работа совершается за счет убыли внутренней энергии системы. Используя первое начало термодинамики, можно получить уравнения адиабатического процесса:

.

Вычислим работу, совершаемую газом в адиабатическом процессе. Если газ расширяется от объема V1 до V2, то его температура падает от T1 до T2 и работа расширения идеального газа

Это выражение для работы при адиабатическом процессе можно преобразовать к виду

Цикл Карно.

Для создания тепловой машины недостаточно просто иметь нагретое тело (нагреватель), требуется еще 2-е тело – холодильник. Т.о, рабочее тело передает теплоту от нагревателя к холодильнику и попутно совершает полезную работу.

В качестве рабочего тела Сади Карно выбрал идеальный газ. Он рассмотрел следующий процесс:

Кривые 1-2, 3-4 – изотермы, кривые 2-3,4-1 – адиабаты.

На участке 1-2 газ получает теплоту Q1 от нагревателя и, расширяясь, совершает работу (т.е расходует полученное Q1 на совершение работы). Q1=∆U+A1, ∆U=0, т.к. T=const. Q1=A1.

На участке 2-3: газ совершает работу А2, которая равна убыли внутренней энергии; температура понижается. А2= - ∆U2 (температура понижается от Т1 до Т2).

На участке 3-4: V уменьшается, Т2=const. Внешние силы совершают работу по сжатию газа A3: Q2= -A3, Q2=A′. От системы отводится количество теплоты Q2: |Q2|=A3.

На участке 4-1: V уменьшается, T увеличивается. A’4=∆U, Q=∆U+A, 0= ∆U4 + A4 =∆U4-A’4, A’4=∆U (внешние силы совершили работу, которая пошла на увеличение внутренней энергии.

Для изотерм A=A1+A3=Q4-|Q2|.

Площадь под изотермой 3-4 меньше, чем под изотермой 1-2  |A’3|<|A1|, Q1>Q2  газ получает от нагревателя больше теплоты, чем отдает холодильнику.

За полный цикл: ∆U=0, А=А1 – А’3 - ∆U2(=A2) + A’4, ∆U2=3/2*m / M*R(T2-T1).

A=Q1-|Q2| - 3/2*m/M*R(T2-T1) + (-3/2*m/M*R(T1-T2))=Q1-|Q2|.

Коэффициентом полезного действия тепловой машины называется отношение полезной работы, совершаемой за цикл, к количеству теплоты, полученной системой. Выражается в процентах. =(Q1-|Q2|)/Q1 * 100% (1), или =A/Q1 *100% (2). Эти формулы можно использовать для любой тепловой машины.

Теорема Карно: Q1/T1=|Q2|/T2 (для машины Карно). =(T1-T2)/T1 *100%.

КПД, определяемый формулами (1) и (2) – наибольший возможный. В реальных тепловых машинах КПД меньше.

Обратимые и необратимые процессы. Коэффициент полезного действия теплового двигателя

К обратимым процессам относятся процессы, после проведения которых в прямом и обратном направлениях в окружающих систему телах не остается никаких изменений. Для обратимых процессов характерно следующее: если в ходе прямого процесса система получила количество тепла Q и совершила работу А, то в ходе обратного процесса система отдает количество тепла Q = -Q и над ней совершается работа А = -А. К обратимым процессам относятся все равновесные процессы. В случае необратимого процесса, после возвращения системы в исходное состояние, в окружающих систему телах остаются изменения (изменяются положения тел и их температуры). Все реальные процессы в большей или меньшей степени необратимы.

В процессе преобразования тепла в работу используется тепловой двигатель, работающий по какому-либо круговому процессу (циклу). Коэффициент полезного действия такого двигателя (термический КПД) определяет долю тепла, превращаемую в работу:

,

где А  работа, совершенная двигателем за цикл, Q1  количество тепла, полученного двигателем, Q2  количество тепла, отданного двигателем в окружающую среду. Работу теплового двигателя можно представить на диаграмме состояний в виде некоторого теплового кругового процесса (рис.19). Общая работа А определяется площадью цикла 1а2в1. Если за цикл совершается А>0, то цикл называется прямым, и если А<0, – обратным.

Прямой цикл используется в тепловом двигателе, совершающем работу за счет получения извне теплоты. Обратный цикл используется в холодильных машинах, в которых за счет работы внешних сил теплота переносится к телу с более высокой температурой (рис. 20).

Важной задачей термодинамики является изучение процессов преобразования тепла в работу и установления возможных границ повышения термического КПД.

Энтропия. Помимо внутренней энергии, которая является только функциональной составляющей термодинамической системы, в термодинамике используется еще ряд других функций, описывающих состояние термодинамической системы. Особое место среди них занимает энтропия. Пусть Q – теплота, полученная термодинамической системой в изотермическом процессе, а T – температура, при которой произошла эта передача теплоты. Величина Q/ T называется приведенной теплотой. Приведенное количество теплоты, сообщаемое термодинамической системе на бесконечно малом участке процесса будет равно dQ / T. В термодинамике доказывается, что в любом обратимом процессе сумма приведенных количеств теплоты, передаваемая системе на бесконечно малых участках процесса равна нулю. Математически это означает, что dQ/T – есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от того, каким путем перешла система в такое состояние. Функция, полученный дифференциал которой равен dS= dQ/ T – называется энтропией. Энтропия определяется только состоянием термодинамической системы и не зависит от способа перехода системы в это состояние. S – энтропия. Для обратимых процессов delta S = 0. Для необратимых delta S > 0 – неравенство Клаудио. Неравенство Клаудио справедливо только для замкнутой системы. Только в замкнутой системе процессы идут так, что энтропия возрастает. Если система незамкнута и может обмениваться теплотой с окружающей средой, ее энтропия может вести себя любым образом ; dQ = T dS ; При равновестном переходе системы из одного состояния в другое dQ = dU + dA ; delta S = (интеграл 1 – 2) dQ / T = (интеграл) (dU + dA) / T. Физический смысл имеет не сама энтропия, а разность энтропий при переходе системы из одного состояния в другое.

Статистическая природа энтропии.

Физический смысл энтропии был раскрыт Больцманом, который связал энтропию с термодинамической вероятностью w, S=k*lnW,где w - это число способов которыми может быть реализовано данное состояние термодинамической системой. Энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Формула Больцмана позволяет дать энтропии следующее ста­тистическое толкование: энтропия являет­ся мерой неупорядоченности системы. В самом деле, чем больше число микросо­стояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесии-наиболее вероятного состо­яния системы — число микросостояний максимально, при этом максимальна и эн­тропия.

Теорема Нернста: при стремлении температуры к абсолютному нулю энтропия системы стремится к нулю при прочих фиксированных условиях (напр., при неизменных объеме или давлении) (В. Нернст, 1906). Другая формулировка: при помощи конечной последовательности термодинамических процессов нельзя достичь температуры, равной абсолютному нулю.limS(T->0)=0

Связь энтропии с вероятностью состояния системы. Более глубокий смысл энтропии скрывается в статической физике. Энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность состояния системы – это число способов, которыми может быть реализовано данное состояние макроскопической системы. Иными словами W – это число микросостояний, которые реализовывают данные макросостояния.

Больцман методами статистической физики показал, что энтропия S системы и термодинамическая вероятность связаны соотношением: S= k ln (W) ; где k – постоянная Больцмана. Термодинамическая вероятность W не имеет с математической вероятностью ничего общего. Из этого соотношения видно, что энтропия может рассматриваться как мера вероятности состояния термодинамической системы, энтропия является мерой неупорядоченной системы. Чем больше число микросостояний, реализующих данное макросостояние, тем больше ее энтропия.

Энтропия — это количественная мера той теплоты, которая не переходит в работу.

S2 - S1 = ΔS =

Или, другими словами, энтропия — мера рассеивания свободной энергии. А ведь нам уже известно, что любая открытая термодинамическая система в стационарном состоянии стремится к минимальному рассеиванию свободной энергии. Поэтому если в силу причин система отклонилась от стационарного состояния, то вследствие стремления системы к минимальной энтропии, в ней возникают внутренние изменения, возвращающие ее в стационарное состояние.

Коли́чество теплоты́ — энергия, которую получает или теряет тело при теплопередаче. Количество теплоты является одной из основныхтермодинамических величин.

Количество теплоты является функцией процесса, а не функцией состояния, то есть количество теплоты, полученное системой, зависит от способа, которым она была приведена в текущее состояние.

Теплопередача -физический процесс передачи тепловой энергии от более горячего тела к более холодному либо непосредственно (при контакте), либо через разделяющую (тела или среды) перегородку из какого-либо материала.

Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в други

Второй закон термодинамики. Количество теплоты, полученное от нагревателя, не может быть целиком преобразовано в механическую работу циклически действующей тепловой машиной. Это и есть 2ой закон: в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от источника энергии – нагревателя. (by Кельвин Copyright 1851). Второй закон связан с необратимостью процессов в природе. Возможна другая формулировка: невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от холодного тела к горячему. Второй закон имеет вероятный характер. В отличие от закона сохранения энергии, второй закон применим лишь к системам, состоящим из очень большого числа частиц. Для таких систем необратимость процессов объясняется тем, что обратный переход должен был бы привести систему в состояние ничтожно малой вероятностью, практически не отличимой от невозможности.

Самопроизвольные процессы в изолированной системе всегда проходят в направлении перехода от маловероятного состояния в более вероятное.

Циклический процесс-когда система принимает различные состояния,в итоге приходит к начальному состоянию.Т-д законы допустимы только для равновесных систем

Порядок и беспорядок

При тепловом обмене молекулы теплого и холодного тела беспорядочно взаимодействуют друг с другом, поэтому достижение равновесия в данном случае может быть осуществлено бесконечным количеством способов, и вероятность (а значит и энтропия) равномерного обмена, в данном случае, будет расти и стремиться к бесконечности. Для противоположной ситуации, когда взаимодействие молекул будет упорядоченным (например, в случае перехода тепла, наоборот, от холодного к горячему), вероятность такого теплового обмена будет стремиться к нулю.

     Таким образом, направление перехода от порядка к беспорядку (своего рода равновесию) в природе является естественным, или, по-другому, наиболее вероятным. Вот почему механическое движение, которое упорядочено, легко превратить в тепловое, которое беспорядочно, а взаимодействующие друг с другом тела, предоставленные сами себе, стремятся к равновесию.

     Из подобных рассуждений Клаузиус заключает, что для необратимых процессов (таких как передача тепла от горячего холодному) энергия, способная к превращениям, постепенно уменьшается, а энтропия соответственно возрастает. Ученый дает новую формулировку второго начала термодинамики, как общего закона природы: "Энтропия Вселенной стремится к максимуму".

     Другими словами, вероятность к беспорядку (в некотором смысле, равновесию) возрастает, механическая энергия превращается в тепловую, а само тепло равномерно распределяется между телами и окружающей средой. Данная формулировка равносильна концепции "тепловой смерти" британского физика Вильяма Томсона (1824-1907), который ранее уже предупреждал о чрезмерном расточении механической (упорядоченной) энергии и нереальности ее восстановления в прежнем количестве, что приведет в будущем к невозможности обитания человека на Земле.

Теорема Нернста — физический принцип, определяющий поведение энтропии при приближениитемпературы к абсолютному нулю . Является одним из постулатов термодинамики, принимаемым на основе обобщения значительного количества экспериментальных данных.

«Приращение энтропии при абсолютном нуле температуры стремится к конечному пределу, не зависящему от того, в каком равновесном состоянии находится система».

или

где x — любой термодинамический параметр.

Третье начало термодинамики относится только к равновесным состояниям.

Поскольку на основе второго начала термодинамики энтропию можно определить только с точностью до произвольной аддитивной постоянной (то есть, определяется не сама энтропия, а только её изменение):

,

третье начало термодинамики может быть использовано для точного определения энтропии. При этом энтропию равновесной системы при абсолютном нуле температурысчитают равной нулю.

Третье начало термодинамики позволяет находить абсолютное значение энтропии, что нельзя сделать в рамках классической термодинамики (на основе первого и второго начал термодинамики). В классической термодинамике энтропия может быть определена лишь с точностью до произвольной аддитивной постоянной S0, что не мешает термодинамическим исследованиям, так как реально измеряется разность энтропий (S0) в различных состояниях. Согласно третьему началу термодинамики, при  значение  .

В 1911 году Макс Планк сформулировал третье начало термодинамики, как условие обращения в нуль энтропии всех тел при стремлении температуры к абсолютному нулю:   . Отсюда S0 = 0, что даёт возможность определять абсолютное значения энтропии и других термодинамических потенциалов. Формулировка Планка соответствует определению энтропии в статистической физике через термодинамическую вероятность (W) состояния системы S = klnW. При абсолютном нуле температуры система находится в основном квантово-механическом состоянии. Если оно невырожденно, то W = 1 (состояние реализуется единственным микрораспределением) и энтропия S при  равна нулю. В действительности при всех измерениях стремление энтропии к нулю начинает проявляться значительно раньше, чем могут стать существенными дискретность квантовых уровней макроскопической системы и влияние квантового вырождения.