
- •[Править] Цели регрессионного анализа
- •[Править] Математическое определение регрессии
- •[Править] Метод наименьших квадратов (расчёт коэффициентов)
- •[Править] Интерпретация параметров регрессии
- •Показатели корреляции [править] Параметрические показатели корреляции [править] Ковариация
- •[Править] Линейный коэффициент корреляции
- •[Править] Непараметрические показатели корреляции [править] Коэффициент ранговой корреляции Кендалла
- •[Править] Корреляционный анализ
- •[Править] Ограничения корреляционного анализа
- •] Область применения
- •[Править] Применение в технике
- •[Править] Другие применения
- •Взаимнокорреляционная функция
- •[Править] Свойства
[Править] Ограничения корреляционного анализа
Множество корреляционных полей. Распределения значений (x, y) с соответствующими коэффициентами корреляций для каждого из них. Коэффициент корреляции отражает «зашумлённость» линейной зависимости (верхняя строка), но не описывает наклон линейной зависимости (средняя строка), и совсем не подходит для описания сложных, нелинейных зависимостей (нижняя строка). Для распределения, показанного в центре рисунка, коэффициент корреляции не определен, так как дисперсия y равна нулю.
Применение возможно при наличии достаточного количества наблюдений для изучения. На практике считается, что число наблюдений должно быть не менее, чем в 5-6 раз превышать число факторов (также встречается рекомендация использовать пропорцию не менее, чем в 10 раз превышающую количество факторов). В случае, если число наблюдений превышает количество факторов в десятки раз, в действие вступает закон больших чисел, который обеспечивает взаимопогашение случайных колебаний.[13]
Необходимо, чтобы совокупность значений всех факторных и результативного признаков подчинялась многомерному нормальному распределению. В случае, если объём совокупности недостаточен для проведения формального тестирования на нормальность распределения, то закон распределения определяется визуально на основе корреляционного поля. Если в расположении точек на этом поле наблюдается линейная тенденция, то можно предположить, что совокупность исходных данных подчиняется нормальному закону распределения.[14].
Исходная совокупность значений должна быть качественно однородной.[13]
Сам по себе факт корреляционной зависимости не даёт основания утверждать, что одна из переменных предшествует или является причиной изменений, или то, что переменные вообще причинно связаны между собой, а не наблюдается действие третьего фактора.[5]
] Область применения
Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие. В различных прикладных отраслях приняты разные границы интервалов для оценки тесноты и значимости связи.
Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.
Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.
Автокорреляционная функция (АКФ, ACF).
В обработке сигналов автокорреляционная функция (АКФ) определяется интегралом:
и показывает связь сигнала
(функции
)
с копией самого себя, смещённого на
величину
.
В теории случайных
функций АКФ является
корреляционным моментом двух значений
одной случайной функции
:
Здесь
,
а
—
математическое
ожидание.
График автокорреляционной функции можно получить, отложив по оси ординат коэффициент корреляции двух функций (базовой и функции сдвинутой на величину ) а по оси абсцисс величину . Если исходная функция строго периодическая, то на графике автокорреляционной функции тоже будет строго периодическая функция. Таким образом, из этого графика можно судить о периодичности базовой функции, а следовательно и о её частотных характеристиках. Это применяется для анализа сложных колебаний, например электроэнцефалограммы человека.
Содержание [убрать]
|