Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Регрессио́нный.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
839.17 Кб
Скачать

[Править] Непараметрические показатели корреляции [править] Коэффициент ранговой корреляции Кендалла

Применяется для выявления взаимосвязи между количественными или качественными показателями, если их можно ранжировать. Значения показателя X выставляют в порядке возрастания и присваивают им ранги. Ранжируют значения показателя Y и рассчитывают коэффициент корреляции Кендалла:

,

где .

 — суммарное число наблюдений, следующих за текущими наблюдениями с большим значением рангов Y.

 — суммарное число наблюдений, следующих за текущими наблюдениями с меньшим значением рангов Y. (равные ранги не учитываются!)

Если исследуемые данные повторяются (имеют одинаковые ранги), то в расчетах используется скорректированный коэффициент корреляции Кендалла:

 — число связанных рангов в ряду X и Y соответственно.

[править] Коэффициент ранговой корреляции Спирмена

Каждому показателю X и Y присваивается ранг. На основе полученных рангов рассчитываются их разности и вычисляется коэффициент корреляции Спирмена:

[править] Коэффициент корреляции знаков Фехнера

Подсчитывается количество совпадений и несовпадений знаков отклонений значений показателей от их среднего значения.

C — число пар, у которых знаки отклонений значений от их средних совпадают.

H — число пар, у которых знаки отклонений значений от их средних не совпадают.

[править] Коэффициент множественной ранговой корреляции (конкордации)

 — число групп, которые ранжируются.

 — число переменных.

 — ранг -фактора у -единицы.

Значимость:

, то гипотеза об отсутствии связи отвергается.

В случае наличия связанных рангов:

[править] Свойства коэффициента корреляции

  • Неравенство Коши — Буняковского:

если принять в качестве скалярного произведения двух случайных величин ковариацию , то норма случайной величины будет равна , и следствием неравенства Коши — Буняковского будет:

.

  • Коэффициент корреляции равен тогда и только тогда, когда и линейно зависимы (исключая события нулевой вероятности, когда несколько точек «выбиваются» из прямой, отражающей линейную зависимость случайных величин):

,

где . Более того в этом случае знаки и совпадают:

.

Доказательство  [показать]

Рассмотрим случайные величины X и Y c нулевыми средними, и дисперсиями, равными, соответственно, и . Подсчитаем дисперсию случайной величины :

Если предположить, что коэффициент корреляции

то предыдущее выражение перепишется в виде

Поскольку всегда можно выбрать числа a и b так, чтобы (например, если , то берём произвольное a и ), то при этих a и b дисперсия , и значит почти наверное. Но это и означает линейную зависимость между X и Y. Доказательство очевидным образом обобщается на случай величин X и Y с ненулевыми средними, только в вышеприведённых выкладках надо будет X заменить на , и Y — на .

  • Если независимые случайные величины, то . Обратное в общем случае неверно.

[Править] Корреляционный анализ

Корреляционный анализ — метод обработки статистических данных, с помощью которого измеряется теснота связи между двумя или более переменными. Корреляционный анализ тесно связан с регрессионным анализом (также часто встречается термин «корреляционно-регрессионный анализ», который является более общим статистическим понятием), с его помощью определяют необходимость включения тех или иных факторов в уравнение множественной регрессии, а также оценивают полученное уравнение регрессии на соответствие выявленным связям (используя коэффициент детерминации).[1][2]