Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Математические основы 3.doc
Скачиваний:
29
Добавлен:
27.11.2019
Размер:
325.12 Кб
Скачать

Линейные диофантовы уравнения

Мы будем рассматривать нахождение решения линейных диофантовых уравнений двух переменных", а именно, уравнения ax + by = c. Мы должны найти значения целых чисел для x и y, которые удовлетворяют этому уравнению. Этот тип уравнения либо не имеет решений, либо имеет бесконечное число решений. Пусть d = НОД (a, b). Если d†c, то уравнение не имеет решения. Если d|c, то мы имеем бесконечное число решений. Одно из них называется частным, остальные — общими.

Линейное диофантово уравнение — это уравнение двух переменных:ax + by = c.

Частное решение

Если d|c, то можно найти частное решение вышеупомянутого уравнения, используя следующие шаги.

  1. Преобразуем уравнение к a1x + b1y = c1, разделив обе части уравнения на d. Это возможно, потому, что d делит a, b, и c в соответствии с предположением.

  2. Найти s и t в равенстве a1s + b1t = 1, используя расширенный алгоритм Евклида.

  3. Частное решение может быть найдено:

Частное решение: X0 = (c/d)s и y0 = (c/d)t

Общие решения

После нахождения частного решения общие решения могут быть найдены:

Общие решения: x = x0 + k(b/d) и y = y0 – k(a/d), где k — целое число

Пример 2.12

Найти частные и общие решения уравнения 21x + 14y = 35.

Решение

Мы имеем d = НОД (21, 14) = 7. При 7|35 уравнение имеет бесконечное число решений. Мы можем разделить обе стороны уравнения на 7 и получим уравнение 3x + 2y = 5. Используя расширенный алгоритм Евклида, мы находим s и t, такие, что 3s + 2t = 1. Мы имеем S = 1 и t = –1. Решения будут следующие:

Частное решение : x0 = 5 × 1=5 и y0 = 5 × (–1) = -5 тогда 35/7 =5

Общие: x = 5+ k × 2 y= –5 – k × 3 где k — целое

Поэтому решения будут следующие (5, –5), (7, –8), (9, –11)...

Мы можем легко проверить, что каждое из этих решений удовлетворяет первоначальному уравнению.

Пример 2.13

Рассмотрим очень интересное приложение решения диофантовых уравнений в реальной жизни. Мы хотим найти различные комбинации объектов, имеющих различные значения. Например, мы хотим обменять денежный чек 100$ на некоторое число банкнот 20$ и несколько банкнот по 5$. Имеется много вариантов, которые мы можем найти, решая соответствующее диофантово уравнение 20x + 5y = 100. Обозначим d = НОД (20, 5) = 5 и 5|100. Уравнение имеет бесконечное число решений, но в этом случае приемлемы только несколько из них (только те ответы, в которых и x и y являются неотрицательными целыми числами). Мы делим обе части уравнения на 5, чтобы получить 4x + y = 20, и решаем уравнение 4s + t = 1. Мы можем найти s = 0 и t = 1, используя расширенный алгоритм Эвклида. Частное решение: и . Общие решения с неотрицательными x и y — (0, 20), (1, 16), (2, 12), (3, 8), (4, 4), (5, 0). Остальная часть решений неприемлема, потому что y становится отрицательным. Кассир в банке должен спросить, какую из вышеупомянутых комбинаций мы хотим. Первое число в скобках обозначает число банкнот по 20$; второе число обозначает число банкнот по 5$.

2.2. Модульная арифметика

Уравнение деления ( ), рассмотренное в предыдущей секции, имеет два входа (a и n) и два выхода (q и r). В модульной арифметике мы интересуемся только одним из выходов — остатком r. Мы не заботимся о частном q. Другими словами, когда мы делим a на n, мы интересуемся только тем, что значение остатка равно r. Это подразумевает, что мы можем представить изображение вышеупомянутого уравнения как бинарный оператор с двумя входами a и n и одним выходом r.