Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
MC.doc
Скачиваний:
14
Добавлен:
27.11.2019
Размер:
425.98 Кб
Скачать

► Лекция 1. Введение. Предмет курса, его цели и задачи. Моделирование как метод научного познания. Использование моделирования при исследовании, проектировании и эксплуатации систем обработки информации и управления. Понятие о технологии. Возможности формал

 

Введение. Современное состояние проблемы моделирования систем

Моделирование является основным методом исследований во всех областях знаний и научно обоснованным методом оценок характеристик сложных систем, используемым для принятия решений в различных сферах инженерной деятельности. Существующие и проектируемые системы можно эффективно исследовать с помощью математических моделей (аналитических и имитационных), реализуемых на современных ЭВМ, которые в этом случае выступают в качестве инструмента экспериментатора с моделью системы.

Модель физического или технического объекта, процесса или системыэто упрощенное их представление в форме отличной от формы их реального существования, сохраняющее с некоторой точностью те их свойства, характеристики и параметры, которые интересуют исследователя.

Зачем нужна замена реального объекта моделью? (Копия хуже оригинала)

Экспериментировать с физическим объектом может быть а) дорого; б) долго; в) неудобно – объект находится в рабочем режиме - невозможно практически проверить все необходимые гипотезы и допущения; г) опасно.

Моделирование - метод исследования систем на основе переноса изучаемых свойств системы на объекты другой природы.

  • Перенос – три ключевых фактора:

    • Отбор существенных факторов и их оценка. Какие свойства? Как их оценить количественно и качественно?

    • Целостность - Как они связаны внутри? Как они взаимодействуют с внешней средой?

    • Адаптация - Как они существуют исторически? И т.д.

  • Вечное балансирование – перед болотами пере усложнения и … пере упрощения (Беллман Р. Динамическое программирование)

Различают:

·        гомоморфные и

·        изоморфные модели.

Гомоморфизм отображение части свойств оригинала на модель.

Изоморфизм взаимно однозначное отображение соответствие между оригиналом и моделью в области изучаемых свойств.

Процесс моделирования – это весь процесс от постановки задачи до внедрения результатов моделирования.

 

Функции моделей

Модель может применяться в качестве:

  • средства осмысления действительности;

  • средства общения;

  • средства обучения и тренировки;

  • инструмента прогнозирования;

  • средства постановки экспериментов.

Цель моделирования понять и изучить качественную и количественную природу явления, отразить существенные для исследования черты явления (объекта, системы, процесса) в пригодной для использования в практической деятельности форме.

Моделирование часто сравнивается с альтернативным методом изучения действительности: методом научных экспериментов.

В сравнении с методом научного эксперимента достоинствами метода моделирования являются:

·        универсальность,

·        меньшая стоимость (как правило)

·        меньшая продолжительность во времени (например, для экономических моделей).

Недостатками являются:

·        трудности построения адекватной модели и оценки ее точности,

·        сбор большого количества достоверной информации (в реальной системе они уже есть!!!),

·       не целостность модели (любой объект это не просто сумма элементов, а система!!!)

          Моделирование как метод научного познания

В настоящее время нельзя назвать область человеческой деятельности, в которой в той или иной степени не использовались бы методы моделирования. Особенно это относится к сфере управления различными системами, где основными являются процессы принятия решений на основе получаемой информации. Остановимся на философских аспектах моделирования, а точнее общей теории моделирования.

 

Методологическая основа моделирования.

Обычно объектом (лат. objection - предмет) называют некоторую обособленную (инкапсулированную) сущность, обладающую определенными свойствами. Свойствами объекта проявляются при взаимодействии с другими объектами, т.е. при взаимодействии его со средой (рис. 1).

Рис. 1. Схема взаимодействия «объекта Х - среда»

Причем, объект Х при взаимодействии с одним объектом (объект Y) может проявлять одни свойства с другим объектом (объектом Z) другие.

Вся человеческая деятельность направлена на изучение свойств объектов и организацию взаимодействия между объектами с целью изменения их состояния в среде. Методология как наука об организации деятельности призвана для ответа на вопрос: Как это целенаправленное взаимодействие между объектами лучше организовать?

В научных исследованиях большую роль играют гипотезы, т. е. определенные предсказания, основывающиеся на небольшом количестве опытных данных, наблюдений, догадок. Быстрая и полная проверка выдвигаемых гипотез может быть проведена в ходе специально поставленного эксперимента. При формулировании и проверке правильности гипотез большое значение в качестве метода суждения имеет аналогия.

Аналогией называют суждение о каком-либо частном сходстве двух объектов, причем такое сходство может быть существенным и несущественным. Необходимо отметить, что понятия существенности и несущественности сходства или различия объектов условны и относительны. Существенность сходства (различия) зависит от уровня абстрагирования и в общем случае определяется конечной целью проводимого исследования. Современная научная гипотеза создается, как правило, по аналогии с проверенными на практике научными положениями. Таким образом, аналогия связывает гипотезу с экспериментом.

Гипотезы и аналогии, отражающие реальный, объективно существующий мир, должны обладать наглядностью или сводиться к удобным для исследования логическим схемам; такие логические схемы, упрощающие рассуждения и логические построения или позволяющие проводить эксперименты, уточняющие природу явлений, называются моделями. Другими словами, модель (лат. modulus — мера) — это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала (рис. 2).

Рис. 2. Объекты Y, Z (объект – модели) поддерживают часть свойств объекта Х (объекта оригинала)

Определение моделирования. Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.

Таким образом, моделирование может быть определено как представление объекта моделью для получения информации об этом объекте путем проведения экспериментов с его моделью. Теория замещения одних объектов (оригиналов) другими объектами (моделями) и исследования свойств объектов на их моделях называется теорией моделировани.

Определяя гносеологическую роль теории моделирования, т. е. ее значение в процессе познания, необходимо, прежде всего, отвлечься от имеющегося в науке и технике многообразия моделей и выделить то общее, что присуще моделям различных по своей природе объектов реального мира. Это общее заключается в наличии некоторой структуры (статической или динамической, материальной или мысленной), которая подобна структуре данного объекта. В процессе изучения модель выступает в роли относительного самостоятельного квазиобъекта, позволяющего получить при исследовании некоторые знания о самом объекте.

Рис. 3. Объект Y как самостоятельный квазиобъект объекта Х, т.е. почти объект Х

Если результаты моделирования подтверждаются и могут служить основой для прогнозирования процессов, протекающих в исследуемых объектах, то говорят, что модель адекватна объекту. При этом адекватность модели зависит от цели моделирования и принятых критериев.

Обобщенно моделирование можно определить как метод опосредованного познания, при котором изучаемый объект-оригинал находится в некотором соответствии с другим объектом-моделью, причем модель способна в том или ином отношении замещать оригинал на некоторых стадиях познавательного процесса. Стадии познания, на которых происходит такая замена, а также формы соответствия модели и оригинала могут быть различными:

1) моделирование как познавательный процесс, содержащий переработку информации, поступающей из внешней среды, о происходящих в ней явлениях, в результате чего в сознании появляются образы, соответствующие объектам;

2) моделирование, заключающееся в построении некоторой системы- модели (второй системы), связанной определенными соотношениями подобия с системой-оригиналом (первой системой), причем в этом случае отображение одной системы в другую является средством выявления зависимостей между двумя системами, отраженными в соотношениях подобия, а не результатом непосредственного изучения поступающей информации.

Следует отметить, что с точки зрения философии моделирование — эффективное средство познания природы. Процесс моделирования предполагает наличие объекта исследования; исследователя, перед которым поставлена конкретная задача; модели, создаваемой для получения информации об объекте и необходимой для решения поставленной задачи. Причем по отношению к модели исследователь является, по сути дела, экспериментатором, только в данном случае эксперимент проводится не с реальным объектом, а с его моделью. Такой эксперимент для инженера есть инструмент непосредственного решения организационно-технических задач.

Надо иметь в виду, что любой эксперимент может иметь существенное значение в конкретной области науки только при специальной его обработке и обобщении. Единичный эксперимент никогда не может быть решающим для подтверждения гипотезы, проверки теории. Поэтому инженеры (исследователи и практики) должны быть знакомы с элементами современной методологии теории познания и, в частности, не должны забывать основного положения материалистической философии, что именно экспериментальное исследование, опыт, практика являются критерием истины.

        Использование моделирования при исследовании и проектировании сложных систем

Одна из проблем современной науки и техники — разработка, создание и внедрение в практику новых информационных объектов, а также проектирование объектов, методов исследования характеристик сложных информационно-управляющих и информационно-вычислительных систем различных уровней (например, автоматизированных систем научных исследований и комплексных испытаний, систем автоматизации проектирования, АСУ технологическими процессами и т.д.). При проектировании сложных систем и их подсистем возникают многочисленные задачи, требующие оценки количественных и качественных закономерностей процессов функционирования таких систем, проведения структурного алгоритмического и параметрического их синтеза.

Особенности разработки систем.

Рассматриваемые нами объекты, как правило, состоят из большего количества внутренних объектов, взаимосвязанных между собой. Такие объекты относятся к классу больших систем. Эти системы также могут иметь сложные связи между входящими в эту систему объектами, и тогда речь уже пойдет о больших и сложных системах.

Сложность структуры и стохастичность связей между элементами, неоднозначность алгоритмов поведения при различных условиях, большое количество параметров и переменных, неполноту и недетерминированность исходной информации, разнообразие и вероятностный характер воздействий внешней среды и т. д. Ограниченность возможностей экспериментального исследования больших и сложных систем делает актуальной разработку методики их моделирования, которая позволила бы в соответствующей форме представить процессы функционирования систем, описание протекания этих процессов с помощью разного рода моделей, получение результатов экспериментов с моделями по оценке характеристики исследуемых объектов. Причем на разных этапах создания и использования перечисленных систем для всего многообразия входящих в них подсистем применив метод моделирования преследует конкретные цели, а эффективность метода зависит от того, насколько грамотно разработчик использует возможности моделирования.

Независимо от разбиения конкретной большой и сложной системы на подсистемы при проектировании каждой из них необходимо выполнить внешнее проектирование (макропроектирование) и внутреннее проектирование (микропроектирование). Так как на этих стадиях разработчик преследует различные цели, то и используемые при этом методы и средства моделирования могут существенно отличаться.

На стадии макропроектирования должна быть разработана обобщенная модель процесса функционирования сложной системы, позволяющая разработчику получить ответы на вопросы об эффективности различных стратегий управления объектом при его взаимодействии с внешней средой.

На стадии микропроектирования разрабатывают модели с целью создания эффективных подсистем. Причем используемые методы и средства моделирования зависят от того, какие конкретно обеспечивающие подсистемы разрабатываются: информационные, математические, технические, программные и т. д.

Рассмотрим пространство работ (деятельности) по проектированию большой и сложной системы Х (см. рис. 4). Вся проектная работа сопровождается созданием большого количества разнородных моделей. Эти модели используются, как правило, в исследовательских целях, с помощью которых решаются сотни проблем по ходу проектирования объекта Х.

Рис. 4. Состояние проектируемого объекта Х в пространстве работ

Х1 – первый прототип информационного объекта Х (модель (Х1) объекта Х)

Х2 – второй прототип информационного объекта Х (модель (Х2) объекта Х)

. . .

Таким образом, проектирование (создание) объекта Х происходит через моделирование, например прототипов Х1, Х2, … и т.д. этого объекта.

Особенности использования моделей. Выбор метода моделирования и необходимая детализация моделей существенно зависят от этапа разработки сложной системы. На этапах обследования объекта управления, например промышленного предприятия, и разработки технического задания на проектирование автоматизированной системы управления модели в основном носят описательный характер и преследуют цель наиболее полно представить в компактной форме информацию об объекте, необходимую разработчику системы.

На этапах разработки технического и рабочего проектов систем, модели отдельных подсистем детализируются, и моделирование служит для решения конкретных задач проектирования, т.е. выбора оптимального по определенному критерию при заданных ограничениях варианта из множества допустимых. Поэтому в основном на этих этапах проектирования сложных систем используются модели для целей синтеза.

Целевое назначение моделирования на этапе внедрения и эксплуатации сложных систем — это проигрывание возможных ситуаций для принятия обоснованных и перспективных решений по управлению объектом. Моделирование (имитацию) также широко применяют при обучении и тренировке персонала автоматизированных систем управления, вычислительных комплексов и сетей, информационных систем в различных сферах. В этом случае моделирование носит характер деловых игр. Модель, реализуемая обычно на ЭВМ, воспроизводит поведение управляемого объекта и внешней среды, а люди в определенные моменты времени принимают решения по управлению объектом.

АСОИУ являются системами, которые развиваются по мере эволюции объекта управления, появления новых средств управления и т. д. Поэтому при прогнозировании развития сложных систем роль моделирования очень высока, так как это единственная возможность ответить на многочисленные вопросы о путях дальнейшего эффективного развития системы и выбора из них наиболее оптимального.

        Перспективы развития методов и средств моделирования систем в свете новых информационных технологий

В последние годы основные достижения в различных областях науки и техники неразрывно связаны с процессом совершенствования ЭВМ. Сфера эксплуатации ЭВМ — бурно развивающаяся отрасль человеческой практики, стимулирующая развитие новых теоретических и прикладных направлений. Ресурсы современной информационно-вычислительной техники дают возможность ставить и решать математические задачи такой сложности, которые в недавнем прошлом казались нереализуемыми, например моделирование больших систем.

Аналитические и имитационные методы. Исторически первым сложился аналитический подход к исследованию систем, когда ЭВМ использовалась в качестве вычислителя по аналитическим зависимостям. Анализ характеристик процессов функционирования больших систем с помощью только аналитических методов исследования наталкивается обычно на значительные трудности, приводящие к необходимости существенного упрощения моделей либо на этапе их построения, либо в процессе работы с моделью, что может привести к получению недостоверных результатов.

Поэтому в настоящее время наряду с построением аналитических моделей большое внимание уделяется задачам оценки характеристик больших систем на основе имитационных моделей, реализованных на современных ЭВМ с высоким быстродействием и большим объемом оперативной памяти. Причем перспективность имитационного моделирования как метода исследования характеристик процесса функционирования больших систем возрастает с повышением быстродействия и оперативной памяти ЭВМ, с развитием математического обеспечения, совершенствованием банков данных и периферийных устройств для организации диалоговых систем моделирования. Это, в свою очередь, способствует появлению новых «чисто машинных» методов решения задач исследования больших систем на основе организации имитационных экспериментов с их моделями. Причем ориентация на автоматизированные рабочие места на базе персональных ЭВМ для реализации экспериментов с имитационными моделями больших систем позволяет проводить не только анализ их характеристик, но и решать задачи структурного, алгоритмического и параметрического синтеза таких систем при заданных критериях оценки эффективности и ограничениях.

Достигнутые успехи в использовании средств вычислительной техники для целей моделирования часто создают иллюзию, что применение современной ЭВМ гарантирует возможность исследования системы любой сложности. При этом игнорируется тот факт, что в основу любой модели положено трудоемкое по затратам времени и материальных ресурсов предварительное изучение явлений, имеющих место в объекте-оригинале. И от того, насколько детально изучены реальные явления, насколько правильно проведена их формализация и алгоритмизация, зависит в конечном итоге успех моделирования конкретного объекта.

Средства моделирования систем. Расширение возможностей моделирования различных классов больших систем неразрывно связано с совершенствованием средств вычислительной техники и техники связи. Перспективным направлением является создание для целей моделирования иерархических многомашинных вычислительных систем и сетей.

При создании больших систем их компоненты разрабатываются различными коллективами, которые используют средства моделирования при анализе и синтезе отдельных подсистем. При этом разработчикам необходимы оперативный доступ к программно-техническим средствам моделирования, а также оперативный обмен результатами моделирования отдельных взаимодействующих подсистем. Таким образом, появляется необходимость в создании диалоговых систем моделирования, для которых характерны следующие особенности: возможность одновременной работы многих пользователей, занятых разработкой одной или нескольких систем, доступ пользователей к программно-техническим ресурсам системы моделирования, включая, базы данных и знаний, пакеты прикладных программ моделирования, обеспечение диалогового режима работы с различными вычислительными машинами и устройствами, включая цифровые и аналоговые вычислительные машины, установки натурного и физического моделирования, элементы реальных систем и т. п., диспетчирование работ в системе моделирования и оказание различных услуг пользователям, включая обучение работе с диалоговой системой моделирования при обеспечении дружественного интерфейса.

В зависимости от специфики исследуемых объектов в ряде случаев эффективным оказывается моделирование на аналоговых вычислительных машинах (АВМ). При этом надо иметь в виду, что АВМ значительно уступают ЭВМ по точности и логическим возможностям, но по быстродействию, схемной простоте реализации, сопрягаемости с датчиками внешней информации АВМ превосходят ЭВМ или по крайней мере не уступают им.

Для сложных динамических объектов перспективным является моделирование на базе гибридных (аналого-цифровых) вычислительных комплексов. Такие комплексы реализуют преимущества цифрового и аналогового моделирования и позволяют наиболее эффективно использовать ресурсы ЭВМ и АВМ в составе единого комплекса. При использовании гибридных моделирующих комплексов упрощаются вопросы взаимодействия с датчиками, установленными на реальных объектах, что позволяет, в свою очередь, проводить комбинированное моделирование с использованием аналого-цифровой части модели и натурной части объекта.

Такие гибридные моделирующие комплексы могут входить в состав многомашинного вычислительного комплекса, что еще больше расширяет его возможности с точки зрения моделируемых классов больших систем.

Информационные технологии в обществе XXI века. Конец XX столетия ознаменовался интенсивным развитием и внедрением во все сферы жизни общества информатики. Это проявилось в интенсивном совершенствовании средств вычислительной техники и техники связи, в появлении новых и в дальнейшем развитии существующих информационных технологий, а также в реализации прикладных информационных систем. Достижения информатики заняли достойное место в организационном управлении, в промышленности, в проведении научных исследований и в автоматизированном проектировании. Информатизиция охватила и социальную сферу: образование, науку, культуру, здравоохранение.

Переход страны к рыночной экономике потребовал развития соответствующего информационного обеспечения. Постепенно в России формировался рынок, в котором информация начинала выступать как ресурс, имеющий коммерческий характер. Наряду с производством систем и средств информатики большое место в настоящее время занимают и информационные услуги, на базе самоокупаемости интенсивно развивается отрасль связи. Телефония, радиовещание, телевидение работают с использованием различных типов каналов связи. Компьютерная техника прочно вошла в быт и используется как в образовании, так и в воспитании подрастающего поколения.

Домашний компьютер стал естественным для многих семей. В образовании значительная доля нагрузки в учебном процессе переносится на самостоятельные задания, выполняемые на домашнем компьютере. По своему качеству домашний компьютер в настоящее время часто оказывается намного выше компьютера, используемого в школе или в ВУЗе. Характерно, что в последние годы покупая домашний компьютер, пользователь начал обращать внимание на место сборки, конфигурацию и перспективные возможности техники. Приобретается и значительное количество программных средств, в том числе записанных на CD-ROM, огромное число абонентов подключается к Интернет, значительное число пользователей работает с использованием сотовой и других сетей.

Все это подтверждает, что процесс иформатизации интенсифицируется, завершается этап неуправляемой информатизации. Управляемая составляющая, которая реализовывалась в основном в образовании, в промышленности и в административном управлении оказалась явно недостаточной из-за малых финансовых средств, но в целом современный уровень информатизации позволяет констатировать, что начало следующего века станет точкой перехода из века энергетики в век информатики, как это прогнозировал Норберт Винер.

Информатизация как процесс перехода от индустриального общества к информационному характеризуется резким перераспределением трудовых ресурсов в материальное производство и в сферу информации. Это соотношение изменяется от 3:1 к 1:3. В ряде стран суммарные расходы на компьютерную технику, телекоммуникации, электронику превысили расходы на энергетику, а поэтому, рассматривая проблему перспектив развития образования, нам необходимо исходить из будущего, поскольку только логически разработанная картина будущего может помочь познать настоящее. Проблема становления информационного общества и составляющая ее проблема информатизации образования должна рассматриваться в тесной взаимосвязи с проблемой будущего устойчивого развития цивилизации.

Модель образовательной системы должна быть сформирована с учетом адаптации образования к модели устойчивого развития цивилизации, а отсюда вытекает проблема опережающего развития образовательной системы, которая должна удовлетворять потребностям будущего информационного общества.

Для информационного общества характерно полное удовлетворение информационных потребностей населения при завершении формирования единой информационной среды, определяющей новую культуру как общества в целом, так и каждого человека в отдельности. Информационная культура как составляющая и базис информационного общества должна закладываться уже в настоящее время. Переход от консервативной образовательной системы к опережающей мог бы базироваться на опережающем формировании информационного пространства Российского образования. Только образование может служить фундаментом новой информационной культуры.

Информационная культура конечно не ограничивается системой знаний в области информационных процессов, технологий и должна включать активно преобразовательный аспект отношения к миру. По сути информационная культура может рассматриваться как свод правил поведения в информационном обществе, в коммуникационной среде, в человеко-машинных системах, вписывающихся в мировую гуманистическую культуру человечества. Уже в настоящее время вхождение пользователя в мировую сеть позволяет получить огромные объемы информации, которая может быть предназначена и для идеологической обработки.

Необходимо воспитывать корректное отношение к получаемой информации. Информационное пространство Российского образования должно отвечать национальным интересам и базироваться на традициях отечественной культуры. Повсеместное использование зарубежной компьютерной техники сопровождается планомерным информационным идеологическим воздействием на пользователей. Можно пойти по пути защиты от чуждой нам информации, создавая соответствующие методы и средства, но особое внимание нужно обратить на информационную культуру педагога, воспитателя, учителя школы и преподавателя ВУЗа.

Уровень информационной подготовки учителя нередко отстает от уровня ученика, работающего на домашнем компьютере, подключенном к сети. Проблема развития интеллекта учащихся не может быть решена только средствами информатики, но проблема развития науки об образовании должна разрешаться с учетом перехода в информационное общество, в котором будет сформирована инфоноосфера личности, а поэтому развитие интеллектуальных способностей личности даже в настоящее время тесно смыкается с проблемой информатизации образования. Возможности информатизации образования определяются современными достижениями информатики и методологией их использования в образовании.

Можно выделить три уровня информатики:

физический — программно-аппаратные средства вычислительной

техники и техники связи;

логический — информационные технологии;

прикладной — пользовательские информационные системы.

Для физического уровня характерно, что компьютерная техника и техника связи практически вся разработана за рубежом и в лучшем случае наблюдается лишь ее сборка на отечественном производстве.

Информатизация города, региона, области базируется на создании единой телекоммуникационной среды. Отличительными особенностями перспективных сетей являются интеграция услуг, предоставляемых пользователю, цифровизация, комплексное использование проводных, радио- и космических каналов связи, переход к цифровым сетям интегрального обслуживания. Использование волоконно-оптических линий и сетей кабельного телевидения позволяет на одной и той же базе обеспечить передачу речи, видеосигнала, данных, служебной информации и тем самым обеспечить вхождение каждого пользователя как в Российское, так и в мировое информационное пространство.

Происходит формирование единой информационной среды на основе объединения банков данных и баз знаний, проектируются конкретные информационные системы в различных областях человеческой деятельности. Совершенствование технической базы сопровождается продвижением современных операционных систем в пользовательскую среду, развиваются открытые системы.

Модели базовых информационных технологий в образовании. Для логического уровня информатики характерно совершенствование существующих, создание и развитие новых информационных технологий. Получили развитие как теория, так и практика информационных технологий. Развивается методология, совершенствуются средства информационных технологий. Уже в настоящее время могут быть выделены базовые информационные процессы и информационные технологии.

В рамках базовых технологий получают развитие конкретные технологии, решающие задачи в выбранных предметных областях. Переход к информационному обществу заставляет задуматься о готовности выпускников учебных заведений к жизни и к труду в обществе XXI века. Учитывая, что уже в настоящее время скорости преобразования технологий производства стали опережать темпы смены поколений, оказывается необходимым не только совершенствование и дополнительная подготовка, но и неоднократное освоение новых видов деятельности в течение трудовой жизни. Поэтому в информационном обществе встает проблема обучения, и непрерывное образование становится составной частью жизни каждого человека. В этих условиях информатизация означает изменение всей образовательной системы с ее ориентацией на новую информационную культуру. Освоение новой информационной культуры может в значительной степени реализовываться за счет внедрения в учебный процесс, управление образованием и в повседневную жизнь перспективных информационных технологий.

Прежде всего следует обратить особое внимание на проблему обеспечения сферы образования теорией и методикой как разработки, так и эффективного применения новых средств информационных технологий. Теория информационных технологий должна определить модели базовых информационных процессов, связанных с получением, сбором, передачей, обработкой, хранением, накоплением и представлением информации. Особое место занимают моделиформализации и представления знаний.

Весьма актуальным представляется выделение базовых информационных технологий, к которым уже в настоящее время можно отнести технологии распределенного хранения и обработки, офисные технологии, мультимедиа технологии, геоинформационные технологии, технологии защиты информации, CASE-технологии, телекоммуникационные технологии. На основе базовых разрабатываются прикладные информационные технологии по областям применения, позволяющие получать конкретные продукты соответствующего назначения в виде средств, систем, сред.

В рамках указанных технологий в образовании уже в настоящее время получили широкое применение:

1) компьютерные программы и обучающие системы, представляющие собой электронные учебники, учебные пособия, тренажеры, лабораторные практикумы, системы тестирования знаний и квалификации, выполненные на различных типах машинных носителей;

2) системы на базе мультимедиа-технологии, построенные с применением видеотехники, накопителей на CD-ROM и реализуемые на ПЭВМ;

3) интеллектуальные обучающие экспертные системы, которые специализируются по конкретным областям применения и имеют практическое значение как в процессе обучения, так и в учебных исследованиях;

4) информационные среды на основе баз данных и знаний, позволяющие осуществить как прямой, так и удаленный доступ к информационным ресурсам;

5) телекоммуникационные системы, реализующие электронную почту, телеконференции и т. д. и позволяющие осуществить выход в мировые коммуникационные сети;

6) электронные настольные типографии, позволяющие в индивидуальном режиме с высокой скоростью осуществить производство учебных пособий и документов на различных носителях;

7) электронные библиотеки как распределенного, так и централизованного характера, позволяющие по-новому реализовать доступ учащихся к мировым информационным ресурсам;

8) геоинформационные системы, которые базируются на технологии объединения компьютерной картографии и систем управления базами данных. В итоге удается создать многослойные электронные карты, опорный слой которых описывает базовые явления или ситуации, а каждый последующий — задает один из аспектов, процессов или явлений;

9) системы защиты информации различной ориентации (от несанкционированного доступа при хранении информации, от искажений при передаче информации, от подслушивания и т. д.).

Перспективы применения информационных технологий. Методически новые информационные технологии в образовании должны быть проработаны с ориентацией на конкретное применение. Часть технологий может поддерживать учебный процесс (лекционные и практические занятия), другие технологии способны эффективно поддержать разработку новых учебников и учебных пособий. Информационные технологии помогут также эффективно организовать проведение экспериментально-исследовательских работ как в школе, так и в ВУЗе. Особую значимость информационные технологии приобретают при самостоятельной работе учащихся на домашнем компьютере с использованием современных методов моделирования.

Какие же новые возможности открываются при внедрении современных информационных технологий в образование? На основе мультимедиа технологии появляется возможность создавать учебники, учебные пособия и другие методические материалы на машинном носителе, которые могут быть разделены на некоторые группы:

1. Учебники, представляющие собой текстовое изложение материала с большим количеством иллюстраций, которые могут быть установлены на сервере и переданы через сеть на домашний компьютер. При ограниченном количестве материала такой учебник может быть реализован в прямом доступе пользователя к серверу.

2. Учебники с высокой динамикой иллюстративного материала, выполненные на CD-ROM. Наряду с основным материалом они содержат средства интерактивного доступа, средства анимации и мультипликации, а также видеоизображения, в динамике демонстрирующие принципы и способы реализации отдельных процессов и явлений. Такие учебники могут иметь не только образовательное, но и художественное назначение. Огромный объем памяти носителя информации позволяет реализовывать на одном оптическом диске энциклопедию, справочник, путеводитель и т. д.

3. Современные компьютерные обучающие системы для проведения учебно-исследовательских работ. Они реализовывают моделирование как процессов, так и явлений, т. е. создают новую учебную компьютерную среду, в которой обучаемый является активным, и может сам вести учебный процесс.

4. Системы виртуальной реальности, в которых учащийся становится участником компьютерной модели, отображающей окружающий мир. Для грамотного использования мультимедиа продуктов этого типа крайне важно изучение их психологических особенностей и негативных воздействий на обучаемого.

5. Системы дистанционного обучения. В сложных социально-экономических условиях дистанционное образование становится особенно актуальным для отдаленных регионов, для людей с малой подвижностью, а также при самообразовании и самостоятельной работе учащихся. Эффективная реализация дистанционного обучения возможна лишь при целенаправленной программе создания высококачественных мультимедиа продуктов учебного назначения по фундаментальным, естественнонаучным, общепрофессиональным и специальным дисциплинам.

К сожалению, это требует значительных финансовых средств в пока не окупается на коммерческой основе, необходимы существенные бюджетные ассигнования в эту область. Реализация такой программы позволит по-новому организовать учебных процесс, увеличив нагрузку на самостоятельную работу обучаемого.

Формирование новой информационной культуры должно базироваться прежде всего на определенном уровне обучения в школе, а поэтому особое внимание следует уделить содержанию программы базового курса информатики, который, с одной стороны, должен быть согласован по содержанию с последующим обучением в ВУЗе, а с другой, должен поддерживать и остальные предметы школьного образования. В курс информатики уже в настоящее время закладываются сведения по моделирования процессов и явлений, по методологии формирования информационных моделей окружающего мира. У учащихся должна возникать в процессе познания информационная картина мира. Это невозможно без формирования информационной культуры населения. В основу создания информационной культуры нового общества должна быть положена идея компьютерной поддержки каждого изучаемого предмета, нельзя подменить это изучением единственного курса информатики.

Весьма важным является принцип непрерывности информационной подготовки учащихся, который должен соблюдаться как на стадии школьного, так и при переходе от школьного к ВУЗовскому уровню. В структуре ВУЗовского образования информатика является фундаментальной дисциплиной. Наряду с информатикой в учебном плане специальностей может предусматриваться ряд курсов информационной подготовки даже для нетехнических ВУЗов, которые должны совершенствоваться, чтобы компьютер стал естественным орудием труда в любой предметной области деятельности выпускника ВУЗа. К информационной подготовке можно отнести обучение методологии и средствам моделирования. Создание опережающей информационной среды непрерывного Российского образования требует и решения ряда методических и организационных проблем, в том числе следующие:

1. Принятие единой системы программно и аппаратно совместимых средств вычислительной техники и техники связи, используемой в непрерывном учебном процессе. Это требует сертификации используемых средств учебного назначения и реализации программы по созданию сертификационных центров и эффективному их использованию.

2. Подключение образовательных организаций к единой цифровой сети в последующим выходом в Интернет. Решение этой задачи в значительной степени реализуется в настоящее время в высшем образовании и сдерживается в школьном образовании по финансовым причинам, а также и по сложностям выполнения для отдаленных районов.

3. Формирование единой информационной среды непрерывного образования с созданием баз данных по направлениям и специальностям подготовки, которые бы включали в себя методические документы, энциклопедии, справочники, учебники и учебные пособия, а также дополнительные средства, поддерживающие учебный процесс. Актуальным является представление в международной сети наших достижений и возможностей. Необходима организация обмена информационными ресурсами Российской образовательной системы с международной.

4. Необходимо совершенствование инструментальных средств непрерывного образования, ориентированных на ускоренное освоение материала и приобретение устойчивых навыков обучаемых, а также преследующих цели индивидуального обучения. Сюда можно отнести перспективные программные оболочки по разработке компьютерных учебников и методических материалов, программные и аппаратные средства создания компьютерных обучающих систем, средства технологии разработки мультимедиа продуктов, геоинформационных систем и т. д.

5. Необходима организация инфраструктуры информатизации образования как составной части информатизации общества в целом. Эта структура должна обеспечить создание новых, тиражирование и внедрение существующих информационных технологий в непрерывное образование.

Идеологически при информатизации образования необходимо учитывать ряд принципиальных позиций:

•  Эволюционное развитие сложившейся методологии образования за счет явных преимуществ новых информационных технологий, а именно, возможность наглядного, динамичного представления информатизации с использованием видеоизображений и звука, применения удаленного доступа для ознакомления с внешним и внесения собственного информационного ресурса в образовании.

• Непрерывность и преемственность компьютерного образования на всех уровнях обучения от дошкольного до послевузовского. Непрерывность может быть обеспечена компьютерной поддержкой всех предметов и дисциплинучебного процесса.

• Обеспечение свободы выбора методики, стиля и средств обучения с целью выявления творческих индивидуальных способностей обучаемого в сочетании с возможностью их коллективной деятельности на основе информационных технологий и телекоммуникационных систем.

• Создание научно и методически основанной системы базового образования на основе компьютерных технологий. Одним из реальных путей решения проблемы в целом является формирование и реализация региональных научно-технических программ с долевым федеральным и местным бюджетным финансированием при дополнительном использовании внебюджетных средств. Предметом специальных исследований коллективов Высшей школы должны стать содержание, методы и средства развития образования как опережающей системы в будущем информационном обществе. При этом фундаментальное место занимают методы и средства моделирования,на основе которых можно предсказать будущее. Только при устойчивом развитии цивилизации мы можем надеяться на последовательное становление ноосферы как сферы разума. Будущее развитие человечества должно быть управляемым и в этом аспекте, несомненно, управляемым должно быть и развитие образования.

 

Классификация моделей (по способу представления, назначению, степени соответствия объекту). Примеры моделей.

По способу представления объекта моделирования

o      статические (например, поперечный разрез объекта) и динамические (временные ряды);

o       детерминистские и стохастические;

o       дискретные и непрерывные.

 

По назначению

  • Исследовательские (предпроектные) модели. Используются для изучения свойств реальных объектов и систем. Как правило, это модели инвариантные к реальному времени.

  • Модели поддержки функционирования. Модели реального времени (real-time или hardware-in-loop модели) являющиеся составной частью реальной системы (используются либо для управления, либо для отладки). Например, построенные с помощью систем моделирования VisSim или MBTY и работающие в режиме управления реальным объектом, или же аналоговые системы управления. Модели оперативного управления ГАП.

По степени соответствия модели реальному объекту:

  • Физически состоятельные – (истинные), – опирающиеся на те же физические законы, характеризующие объект моделирования в области их применимости.

  • Аппроксимации – (ложные), – построенные на основе приближенных или эмпирических формул и гипотез, характеризующих объект (черный ящик – классический пример).

  • Адекватные по точности – отображающие в области своей применимости с необходимой (заданной) точностью реальный объект.

Примеры: Полномасштабные модели: ЦНИИРТК – робот для снятия спутников с орбиты; Динамическая физическая модель: Опытный завод для изучения нового химического процесса, модель самолета (автомобиля) для испытания в аэродинамической трубе, модель дамбы (ВНИИ гидротехники).

 

Классификация моделей по способу реализации.

По способу реализации

  1. Физические модели. Модели, воспринимаемые органами чувств человека (зрение, слух, обоняние)

2.      Нефизические модели. Модели, воспринимаемые умом, интеллектом человека: концептуальное моделирование (управление проектами), математическое моделирование (ТАУ, управление), ситуационное моделирование (маркетинг), имитационное моделирование.

Физические модели

Два основных свойства (подхода) к созданию физических моделей:

1) Способ реализации. Физические модели основаны на использовании эффекта масштаба в случае возможности пропорционального изменения всего комплекса изучаемых свойств. Примеры: манекены в ателье, игрушки, глобус, статические макеты зданий и сооружений в архитектуре при планировке, полномасштабные макеты на военных учениях.

2) Точность – степень соответствия. Физическое моделирование, при котором модель и моделируемый объект а) представляют собой реальные объекты или процессы в) единой или различной физической природы, причем между процессами в объекте-оригинале и в модели в) выполняются некоторые соотношения подобия, вытекающие из схожести физических явлений;

3) Синтез компьютерного и физического моделирования. Виртуальные модели, отображаемые на мониторе в графической и цифровой форме.

Нефизические модели.

1) Математические модели представляют собой систему математических уравнений или неравенств адекватно описывающую изучаемое явление или процесс.

2) Ситуационной моделью называют описание ситуации, в которой предстоит действовать изучаемому объекту, 1) часто не содержащее полной информации и 2) предполагающее включение человека или животного в качестве изучаемого объекта. Пример: деловые игры, тренажеры, ролевые игры, спектакли.

2) Концептуальное моделирование, при котором совокупность уже известных фактов или представлений относительно исследуемого объекта или системы истолковывается с помощью некоторых специальных знаков, символов, операций над ними или с помощью естественного или искусственного языков (не формулы и не алгоритмы).

  • Лекция 2. Структурно-функциональное моделирование (назначение, методология SADT, графически язык, IDEF0 - базовые принципы). Расширения IDEF0 – DFD, IDEF3. Построение модели данных на базе функциональной модели.

 

Структурно-функциональное моделирование (назначение, методология SADT , графически язык, IDEF 0 - базовые принципы).

1) Методология SADT представляет собой совокупность методов, правил и процедур, предназначенных для построения функциональной модели объекта какой-либо предметной области. Функциональная модель SADT отображает функциональную структуру объекта, т.е. производимые им действия и связи между этими действиями.

Основное назначение функциональной модели, реализуемой с помощью ПО BPWin (IDEF0, SADT):

· описания существующих бизнес процессов на предприятии (так называемая модель AS-IS);

· и идеального положения вещей - того, к чему нужно стремиться (модель TO-BE)

· проектирование информационных систем предприятий ( Erwin ).

2) Методология SADT разработана Дугласом Россом более 20 лет назад ( Structured Analysis and Design Technique ). На ее основе разработана, в частности, известная методология IDEF0 (ICAM Definition), которая является основной частью программы ICAM (Интеграция компьютерных и промышленных технологий), проводимой по инициативе ВВС США.

Книга Дэвида А.Марка и Клемента МакГоуэна "Методология структурного анализа и проектирования SADT ", издательство Мета Технология, 1993

3) Графический язык IDEF0 удивительно прост и гармоничен. В его основе лежат два основных понятия:

  1. Первым из них является понятие функционального блока ( Activity Box ). Функциональный блок графически изображается в виде прямоугольника и олицетворяет собой некоторую конкретную функцию в рамках рассматриваемой системы.

· Верхняя сторона имеет значение “Управление” ( Control ); (стрелки сверху, - данные на основании чего выполняется данный процесс - законы, стандарты, приказы и т.д.);

· Левая сторона имеет значение “Вход” ( Input ); (стрелки слева, - данные или объекты, потребляемые или изменяемые процессом);

· Правая сторона имеет значение “Выход” ( Output ); (стрелки справа, - основные результаты деятельности процесса, конечные продукты);

· Нижняя сторона имеет значение “Механизм” ( Mechanism ); (стрелки снизу, означающие, посредством чего или с помощью кого реализуется данный процесс - материальные и/или кадровые ресурсы, необходимые для процесса).

· Вызов - специальная стрелка, указывающая на другую модель работы.

  1. Вторым “китом” методологии IDEF0 является понятие интерфейсной дуги ( Arrow ). Также интерфейсные дуги часто называют потоками или стрелками. Интерфейсная дуга отображает элемент системы, который обрабатывается функциональным блоком или оказывает иное влияние на функцию, отображенную данным функциональным блоком.

Необходимо отметить, что любой функциональный блок по требованиям стандарта должен иметь, по крайней мере, (какие дуги?) одну управляющую интерфейсную дугу и одну исходящую. Это и понятно – каждый процесс должен происходить по каким-то правилам (отображаемым управляющей дугой) и должен выдавать некоторый результат (выходящая дуга), иначе его рассмотрение не имеет никакого смысла.

4) В IDEF0 реализованы три базовых принципа моделирования процессов:

· принцип контекста ;

· принцип функциональной декомпозиции;

· принцип ограничения сложности.

Принцип контекстной диаграммы. На первом этапе проводится описание системы в целом и ее взаимодействия с окружающим миром (контекстная диаграмма). На этой диаграмме отображается только один блок с интерфейсными дугами, простирающимися за пределы рассматриваемой области - главная бизнес функция моделируемой системы. Такая диаграмма с одним функциональным блоком называется контекстной диаграммой, и обозначается идентификатором “А-0”.

Принцип функциональной декомпозиции представляет собой способ моделирования типовой ситуации, когда любое действие, операция, функция могут быть разбиты (декомпозированы) на более простые действия, операции, функции . Другими словами, сложная бизнес-функция может быть представлена в виде совокупности элементарных функций. При этом уровень детализации процесса определяется непосредственно разработчиком модели.

Принцип ограничения сложности. При работе с IDEF0 диаграммами существенным является условие их разборчивости и удобочитаемости. Суть принципа ограничения сложности состоит в том, что количество блоков на диаграмме должно быть не менее двух и не более шести (кроме первой). Практика показывает, что соблюдение этого принципа приводит к тому, что функциональные процессы, представленные в виде IDEF0 модели, хорошо структурированы, понятны и легко поддаются анализу.

Расширения IDEF0 – DFD, IDEF3. Построение модели данных на базе функциональной модели. Инструментальные средства Logic Works и Rational Software, COMOD-технология.

1) Расширение IDEF 0. BP Win позволяет переключиться на любой ветви модели на нотацию IDEF3 ( Workflow Diagram ) или DFD ( Data Flow Diagram ) и создать смешанную модель. 1) Нотация DFD включает такие понятия как внешняя ссылка и хранилище данных, что делает ее более удобной (по сравнению с IDEF0) для моделирования документооборота.

Диаграммы потоков данных ( Data flow diagramming , DFD ) используются для описания документооборота и обработки информации. a ) Таким образом, данный элемент модели IDEF0 дополнен описанием используемой при его выполнении документации и исходных данных из БД предприятия. b ) Наличие в диаграммах DFD элементов для описания источников, приемников и хранилищ данных позволяет более эффективно и наглядно описать процесс документооборота.

2) Методология IDEF3 позволяет описать логику взаимодействия компонентов системы. a ) Workflow diagramming , - методология моделирования, использующая графическое описание информационных потоков, взаимоотношений между процессами обработки информации и объектов, являющихся частью этих процессов. Пример: условия движения документов по системе (наличие виз). b ) Логика, но не алгоритм функционирования!!!

3) Построение модели данных на базе функциональной модели IDEF 0. 1) Построение модели данных предполагает определение сущностей и атрибутов, то есть необходимо определить какая информация будет храниться в конкретной сущности или атрибуте.Пример: сотрудники, сырье, оборудование, транспорт и т.д. Описание аналогично, как это делается при создании БД (первичный ключ, ключи, поля). 2) Пакет ERWin ( IDEF 1 X ) позволяет описать все сущности, используемые при описании бизнес процессов в функциональной модели и в дальнейшем a )выполнить экспорт созданной модели данных внутрь функциональной модели IDEF0 b ) спроектировать логическую и физическую модель БД (сгенерировать схему БД)

4) Инструментальные средства Logic Works и Rational Software .

Фирма Logic Works разработала систему Model Mart - хранилище моделей, к которому открыт доступ для участников проекта создания информационной системы 1) Создание библиотек решений. Model Mart позволяет формировать библиотеки стандартных решений, включающие наиболее удачные фрагменты реализованных проектов, накапливать и использовать типовые модели, объединяя их при необходимости в "сборки" больших систем. 2) На основе существующих баз данных с помощью ERwin возможно восстановление моделей (обратное проектирование), которые в процессе анализа пригодности их для новой системы могут объединяться с типовыми моделями из библиотек моделей. 3) В дополнение к стандартным средствам организации совместной работы Model Mart позволяет сохранять множество версий, снабженных аннотациями, с последующим сравнением предыдущих и новых версий. При необходимости возможен возврат к предыдущим версиям Rational Rose – разработка клиентских приложений не только для реляционной модели, но и объектно-ориентированных БД.

СОМОД технология.

В отличие от SADT это технология пока мало известна и практически не апробирована. Тем не менее, я хочу немного рассказать о ней, поскольку, она: 1) представляет интерес, как в научном, так и в практическом плане; 2) эта технология развивается у нас в ИИ на примере ряда проектов

· Главное для любой технологии моделирования – еще научная и практическая апробация. Почему SADT получила такое широкое распространение – сотни и тысячи проектов успешно выполнены в самих различных сферах. Апробация данной технологии пока невелика: a )ряд проектов медицинской сферы (Анализ статистики и выявление факторов, влияющих на развитие бронхиальной астмы), b )металлургии (Ижорский завод) c ) машиностроение (Белгород машиностроительный завод). Проект не доведен до конца d ) В настоящее время 2 проекта – Адмиралтейские верфи, ФСБ (проблемы предупреждения преступности по регионам России). e ) Кроме того, данной технологией заинтересовались сотрудники SBS на предмет его использования при внедрении продуктов SAP R /3 на российских и зарубежных предприятиях.

· Суть технологии (отличие от традиционного подхода): a ) Разработка функциональной модели; b ) Разработка модели данных. Выделение группы существенных факторов (100…1000 параметров); c ) Сбор и обработка эмпирических данных (за несколько лет); d ) Формирование закономерностей поведения исследуемой системы (без применения этапа имитационного моделирования). Т.е. в данном случае отсутствует алгоритмическое описание системы и собственно эксперимент.

· При реализации этапов используется достаточно сложная методология (математическая статистика, логика и т.д.).

Слабые инструментальные средства (отсутствие базы данных, в основном ориентация на MS Excel – сейчас разрабатывается расширенная оболочка специалистами SBS ).

  • Лекция 3. Имитационное моделирование и компьютерное моделирование. Основные особенности имитационных моделей.

 

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]