Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Микроскопия.rtf
Скачиваний:
6
Добавлен:
26.11.2019
Размер:
11.71 Mб
Скачать

Изучение фиксированных клеток

Несмотря на важность и достаточную информативность витальных наблюдений, большая часть сведений о структуре и свойствах клеток получена на фиксированном материале. Если клетку повредить, она начинает претерпевать ряд изменений, а после гибели клетки в ней активируются автолитические ферменты, что приводит к грубым изме­нениям клеточной структуры. Следовательно, задачи фиксации —убить клетку, прекратить активность внутриклеточных ферментов, предотвратить распад клеточных компонентов, а также избежать потери структур и веществ, препятствовать появлению структур, отсутствующих в живой клетке (артефактные структуры). К сожалению, еще не найден такой химический фиксатор, который удовлетворял бы всем этим требованиям.

Часто для фиксации клеток используются альдегиды и их смеси с другими веществами. В качестве фиксаторов применяют также спирты, вызывающие необратимую денатурацию белков, осаждение нуклеиновых кислот и полисахаридов. Осаждающим действием обладают также сулемовые фиксаторы и фиксаторы с пикриновой кислотой. Фиксаторы, содержащие четырехокись осмия (ОsО4), хорошо сохраняют липиды.

После фиксации объекты в дальнейшем можно подвергать дополнительной обработке. Одной из главных таких обработок является окрашивание клеток. Именно дополнительное окрашивание клеток позволило выявить в них массу деталей.

Стекла с фиксированными мазками одноклеточных организмов или с клетками культуры ткани можно непосредственно помещать в красители. Но для окрашивания клеток в составе органов необходимо получить их срезы. Изучают также срезы и отдельных клеток.

Для этого после фиксации кусочки органов обезвоживают в спиртах возрастающей концентрации, спирт замещают ксилолом, а ксилол — парафином. Таким образом, фиксированная ткань, минуя высушивание на воздухе, оказывается заключенной в твердую массу парафина, ко­торую можно нарезать.

Срезы толщиной до 5—10 мкм получают на специальном приборе — микротоме. Такие срезы приклеиваются на предметное стекло: парафин растворяется в ксилоле, ксилол удаляется спиртами, которые замещаются водой. Теперь срезы можно окрашивать водными растворами красителей. Для изготовления постоянных препаратов окрашен­ные срезы снова обезвоживаются и заливаются в канадский бальзам под покровным стеклом. Эти препараты можно длительно хранить.

Для окраски фиксированных тканей и клеток применяют различные натуральные и главным образом синтетические красители. Натуральные красители (гематоксилин, кармин и др.) употребляют в сочетании с протравами (окислы различных металлов), с которыми они образуют комплексные соединения (лаки).

Синтетические красители подразделяют на кислые и основные. Основные красители представляют собой соли красящих оснований, содержащие в своем составе аминогруппы, которые и определяют их щелочность. Такие красители образуют солевые связи с кислотными группами в структурах клетки. Следовательно, участки клеток, богатые кислотными группами, свяжутся с основными красителями, будут, как их называют, базофильными. Кислотные красители содержат в своем составе гидроксильные группы, или группы SО2ОН. Структуры клеток с основными (щелочными) свойствами связываются с кислотными красителями и называются ацидо- или оксифильными. Существует множество смесей таких красителей, которые одновременно могут окрашивать различные участки клеток в разные цвета и тем самым повышать контрастность клеточных и внеклеточных компонентов. Таким образом, используя всевозможные красители, исследователи не только добиваются четкости морфологической картины клетки, но получают некоторые сведения о химизме той или иной структуры.

Ряд приемов окрашивания, направленных на выявление специфи­ческих химических веществ, получил название гистохимических, или цитохимических. Методов цитохимического анализа очень много.

Существует целый ряд специфических приемов окрашивания, прямо выявляющих те или иные вещества. Это собственно гистохимические (цитохимические) реакции. Основные требования, предъявляемые к такого рода реакциям, следующие: специфичность связывания красителя, неизменность локализации вещества.

Примером такого рода цитохимических реакций может быть широко применяемая реакция на ДНК — реакция Фёльгена (рис. 1). Суть ее в том, что после специфического кислотного гидролиза только на ДНК в результате отщепления пуринов на дезоксирибозе образуются альдегидные группы.

Рис. 1 Схема проведения реакции Фельгена

1- краситель парарозанилин (основной фуксин) переходит в неокрашенную лейкоформу; 2 – реактив Шиффа; 3- гидролиз ДНК соляной кислотой приводит к образованию альдегидных групп, которые, взаимодействуя с реактивом Шиффа, переводят его в окрашенное состояние. (4)

Эти группы могут взаимодействовать со специфическим индикатором, реактивом Шиффа (обесцвеченное основание фуксина), давая красное окрашивание в местах локализации ДНК. Связывание красителя в этом случае строго количественное, что позволяет не только обнаружить и указать места, где есть ДНК, но и измерить ее количество. Используя этот же принцип выявления альдегидных групп, в клетках можно видеть расположение полисахаридов после гидролиза их периодной кислотой (так называемая РАS-реакция).

Также специфически можно определить локализацию белков реак­циями на отдельные аминокислоты (тирозин, триптофан, аргинин и др.). Липиды и жиры обнаруживают в клетках специальными красителями (судан черный), хорошо растворяющимися и аккумулирующи­мися в жировых включениях.

Целая группа цитохимических реакций связана с обнаружением ферментов. Общий принцип этих реакций в том, что в микроскоп вид­ны не сами белковые ферменты, а места их локализации, которые обнаруживаются по продуктам их специфической ферментативной активности.

Количество конечного продукта цитохимической реакции можно определить с помощью метода цитофотометрии. Основу его составляет определение количества химических веществ по поглощению ими света определенной длины волны. Найдено, что интенсивность поглощения лучей пропорциональна концентрации вещества при одной и той же толщине объекта. Следовательно, оценивая степень поглоще­ния света данным веществом, можно узнать его количество. Для тако­го рода исследований используют приборы — микроскопы-цитофотометры; у них за объективом расположен чувствительный фотометр, регистрирующий интенсивность прошедшего через объект светового потока. Зная площадь или объем измеряемой структуры и значение поглощения, можно определить как концентрацию данного вещества, так и его абсолютное содержание. Широко используется метод цитофотометрии при определении количества ДНК на клетку после реакции Фёльгена. В данном случае фотометрируется не сама ДНК, а со­держание окрашенного в красный цвет фуксина, количество которого прямо пропорционально содержанию ДНК. Сравнивая полученные величины поглощения со стандартами, можно пол учить точные значе­ния количества ДНК, выраженные в граммах. Этот метод позволяет измерять количество ДНК до 10-12 – 10-14 г, в то время как микрохимические методы имеют чувствительность не более 10-6 г. С помощью цитофотометрии содержание ДНК в клетках определяется намного точнее обычных биохимических методов.

Количественную оценку получают не только поглощающие свет объекты и вещества, но и излучающие (светящиеся). Так, разработаны приемы количественной флуорометрии, позволяющие по степени свечения определить содержание веществ, с которыми связываются флуорохромы.

Для выявления специфических белков применяют иммунохимические реакции с использованием флуоресцирующих антител. Этот метод иммунофлуоресценции обладает очень большой специфичностью и чувствительностью. Его можно использовать для выявления не только белков, но и отдельных последовательностей нуклеотидов в ДНК или для определения мест локализации РНК—ДНК-гибридных молекул. Для этого сначала на белок (например, тубулин) получают специфические сыворотки, содержащие антитела. Очищенные антитела химически соединяют с флуорохромами. Такие препараты наливают на объекты и с помощью люминесцентного микроскопа по свечению флуорохрома находят места локализации искомых белков в клетке. Однако для того чтобы меченные флуорохромами антитела проникли в клетку, необходимо плазматическую мембрану сделать проницаемой. Обычно это достигается фиксацией клеток и частичной экстракцией липидов из мембран. Для изучения с помощью этого метода цитоскелетных белков прибегают к растворению клеточных мембран различными детергентами.

Для выяснения локализации мест синтеза биополимеров, для опре­деления путей переноса веществ в клетке, для наблюдения за миграцией или свойствами отдельных клеток широко используют метод радиоавтографии - регистрации веществ, меченных изотопами (рис. 2). Принцип этого метода очень прост, он повторяет метод Беккереля, открывшего радиоактивный распад. При радиоавтографическом исследовании в среду с находящимися там клетками вводится предшествен­ник одного из макромолекулярных соединений (например, аминокислота или нуклеотид), один из атомов которого замещен радиоактивным изотопом. Например, вместо 12С введен атом 14С, вместо водорода - тритий (3Н) и др.

Рис. 2 Схема метода радиоавтографии

а- введение меченого3Н-тимина (3НТ); б- включение его в ДНК ядра;

в – клетка покрыта фотоэмульсией, гранулы которой засвечиваются b-частицами; г- гранулы серебра над местами расположения изотопа в клетке;

д – то же, вид сверху

В процессе синтеза в биополимер включится и меченая молекула предшественника. Регистрировать ее место в клетке можно с помощью фотоэмульсии. Если клетки в пласте или на срезе покрыть фотоэмульсией, то через некоторое время в результате распада изотопа b-частицы, разлетающиеся хаотично в разных направлени­ях, попадут в зону чувствительного фотослоя и активируют в нем зерна бромистого серебра. Чем больше будет время экспозиции, т.е. контакта такой меченой клетки с фотоэмульсией, тем больше зерен АgВг будет засвечено. После экспозиции надо проявить препарат, при этом происходит восстановление серебра только в засвеченных гранулах, при фиксации препарата незасвеченные гранулы АgВг растворяются. В результате из массы гранул, которые покрывали объект, останутся только те, которые были активированы b-излучением. Просматривая в микроскоп такие препараты, поверх которых нанесен слой фотоэмульсии, исследователь находит места локализации зерен серебра, которые располагаются напротив мест, где содержится меченое вещество (см. рис. 2).

Этот метод имеет ограничения: точность его будет зависеть от величины зерна АgВг и от энергии частицы. Чем больше величина зерна, тем с меньшей точностью можно узнать место расположения изотопа.

И чем выше энергия частицы и длиннее ее пробег, тем дальше от мес­та распада будет происходить активация зерен АgBr. Поэтому для ме­тода радиоавтографии используют особые мелкозернистые фотоэмульсии (0,2—0,3 мкм) и изотопы с малой энергией b-частиц, главным образом изотоп водорода — тритий (3Н). Тритием могут быть мечены любые предшественники биологических макромолекул: нуклеотиды, аминокислоты, сахара, жирные кислоты. Для радиоавтографических исследований используются также меченые гормоны, антибиотики, ингибиторы и др. Радиоавтографически нельзя изучать растворимые в воде соединения, так как в процессе обработки клеток водными растворами (фиксация, проявление и т.д.) они могут потеряться. Другим ограничением метода является достаточно высокая концентрация данных веществ, так как при низкой концентрации радиоактивного вещества время экспозиции увеличивается, при этом растет опасность появления фона засвеченных гранул АgВг за счет космического излучения.

Метод радиоавтографии — один из основных методов, позволяю­щих изучать динамику синтетических процессов, сравнивать их интенсивность в разных клетках на одном и том же препарате. Так, с помощью этого метода при использовании меченых предшественников РНК было показано, что вся РНК синтезируется только в интерфазном ядре, а наличие цитоплазматической РНК является результатом миграции синтезированных молекул из ядра.

Метод радиоавтографии используется также для определения расположения конкретных типов нуклеиновых кислот или отдельных ну-клеотидных последовательностей в составе клеточных ядер или хромосом — метод молекулярной гибридизации. Для этого раствор с мече­ной нуклеиновой кислотой (например, с рибосомной РНК) или с ее фрагментом (например, с сателитной ДНК) наносят на препарат, предварительно обработанный так, чтобы денатурировать ДНК (разорвать водородные связи в нативной ДНК) в составе хромосом или ядер, что достигается щелочной или температурной обработкой образца. В процессе ренатурации ДНК происходит образование молекулярного гибрида между меченой нуклеиновой кислотой из раствора и комплементарным ему участком ДНК в препарате. Место такой гибридизации определяется радиоавтографически. Этот метод молекулярной гибридизации нуклеиновых кислот позволяет с большой точностью локализовать на хромосоме места с данной нуклеотиднои последовательностью или даже расположение определенных генов.

Метод молекулярной гибридизации нуклеиновых кислот используется также при окраске их флуорохромами. Например, если выделенную ядрышковую ДНК, ответственную за синтез рибосомных РНК, предварительно связать с каким-либо флуорохромом, то после прове­дения ренатурации ДНК на препаратах с этой флуоресцирующей рибосомной ДНК можно видеть, что флуоресценция будет наблюдаться только в ядрышках интерфазных клеток или только в зонах ядрышковых организаторов митотических хромосом. Таким образом в клетках можно локализовать любые последовательности ДНК и даже расположение в ядрах отдельных хромосом. Этот прием называется FISH- метод.