Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Mekhanika.doc
Скачиваний:
5
Добавлен:
26.11.2019
Размер:
1.04 Mб
Скачать

Решение.

Рассмотрим движение центра масс карандаша. В вертикальном положении он обладает потен-циальной энергией, которая при падении переходит в кинетическую энергию вращения (рис.7).

- (1).

Момент инерции карандаша относительно оси, проходящей через его конец, найдем по теореме Штёйнера:

- (2).

Подставив (2) в (1), получим

,откуда ;

= 14 рад/с. Поскольку = = , а линейная скорость v= R, то скорость конца карандаша v 1 = =2,1м./с. Скорость середины =1,05 м/с.

Ответ: v1=2,1м /с , v 2=!,05м/с.

Задача10. Горизонтальная платформа (рис.8) массой m =100 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой n 1 =10 об/мин. Человек массой m 0 =60 кг стоит при этом на краю платформы. С какой частотой n 2 начнет вращаться платформа, если человек перейдет от края платформы к ее центру? Считать платформу однородным диском, а человека — точечной массой.

Дано: m=100 кг , n1 =10 об/мин , m 0=60 кг.

О пределить n 2.

Решение:

Система «человек - платформа» замкнута в проекции на ось у,

т. к. моменты сил Мmg =0 и M m0g =0 в проекции на эту ось. Сле-

довательно, можно воспользоваться законом сохранения момента Рис.8

импульса. В проекции на ось у:

J1 w 1= J 2 w 2 - (1),

где J 1- момент инерции платформы с человеком, стоящим на ёе краю, J 2 - момент инерции платформы с человеком, стоящим в центре, w 1 и w 2 - угловые скорости платформы в обоих случаях. Здесь

- (2),

где R- радиус платформы. Подставляя (2) в (1) и учитывая, что , где n - частота вращения платформы, получим :

; .

Вычисляя , получим

Ответ n 2 =22об/мин.

Задача11.Доказать, что при малых скоростях релятивистская формула кинетической энергии переходит в классическую.

Решение.

Релятивистская формула кинетической энергии:

Разложим выражение по формуле бинома Ньютона

=1 + ... и отбросим члены более высокой степени, чем , в силу их малости (v«c).Тогда

Задача12. Мезоны космических лучей достигают поверхности Земли с самыми разно-образными скоростями. Найти релятивистское сокращение размеров мезона, скорость которого равна 95% скорости света.

Дано v=0,95c

Определить

Решение.

Т. к. поперечные размеры тела при его движении не меняются, то изменение объема тела определяется лоренцевым сокращением продольного размера , определяемого формулой

Следовательно, объем тела сокращается по аналогичной формуле

.

Подставляя числовые данные, получим

V=0,31 2V 0

Тогда относительное изменение объема

% = 68,8%.

Задача13. Солнце излучает поток энергии Р = 3,9. 1О26 Вт. За какое время масса Солнца уменьшится в 2 раза? Излучение Солнца считать постоянным.

Дано: Р=3,9 Вт, m 0=1,989.1030кг.

Определить .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]