Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Контрольные вопросы к коллоквиуму - ответы.docx
Скачиваний:
5
Добавлен:
24.11.2019
Размер:
33.89 Кб
Скачать

Контрольные вопросы к коллоквиуму «Основные свойства живого. Клеточный уровень организации»

  1. Дайте современное определение жизни и охарактеризуйте её свойства. Назовите формы жизни.

  2. Назовите эволюционно-обусловленные уровни организации биологических систем.

  3. Каковы основные положения клеточной теории Т. Шлейдена и М. Шванна? Какие дополнения внёс в эту теорию Р. Вирхов? Современное состояние клеточной теории.

  4. Каков химический состав клетки?

Макроэлементы

К макроэлементам относят кислород (65—75 %), углерод (15—18 %), водород (8—10 %), азот (2,0—3,0 %), калий (0,15—0,4 %), сера (0,15—0,2 %), фосфор (0,2—1,0 %), хлор (0,05—0,1 %), магний (0,02—0,03 %), натрий (0,02—0,03 %), кальций (0,04—2,00 %), железо (0,01—0,015 %). Такие элементы, как C, O, H, N, S, P входят в состав органических соединений.

Микроэлементы

К микроэлементам, составляющим от 0,001 % до 0,000001 % массы тела живых существ, относят ванадий, германий, йод (входит в состав тироксина, гормона щитовидной железы), кобальт (витамин В12), марганец, никель, рутений, селен, фтор (зубная эмаль), медь, хром,цинк

Ультрамикроэлементы

Ультрамикроэлементы составляют менее 0,0000001 % в организмах живых существ, к ним относят золото, серебро оказывают бактерицидное воздействие, ртуть подавляет обратное всасывание воды в почечных канальцах, оказывая воздействие на ферменты. Так же к ультрамикроэлементам относят платину и цезий. Некоторые к этой группе относят и селен, при его недостатке развиваются раковые заболевания. Функции ультрамикроэлементов еще мало понятны.

  1. Как устроены про- и эукариотические клетки?

Прокариоты – древнейшие. Носитель информации - молекула ДНК, нуклеоид. Нет гистонов, обеспечивающих нуклеосомную организацию хроматина. Нет митохондрий, эндоплазматической сети, аппарата Гольджи. Вместо них – мезосомы. Размножаются делением. Это бактерии, син-зел водоросли, риккетсии, микоплазмы и др. Эукариоты – в клетках есть ядра с оболочкой – кариолеммой. Ядерная ДНК заключена в хромосомы. В цитоплазме есть органоиды:митохондрии, эндоплазм. Сеть, ап. Гольджи, лизосомы, рибосомы. Размножение – митоз или мейоз. Гипотезы происхождения эукариотов : этап эволюции1.5 млрд лет назад, первоначально – одноклеточные, потом – многоклеточные, органеллы, напр митохондрии – от внутриклеточных аэробных симбионтов.

  1. Какова организация универсальной биологической мембраны? Какие модели этой мембраны вам известны?

1.Биол мембрана. – важная роль в компартментации. Функции: барьерная, регуляция и избирательная проницаемость веществ, раздел гидрофильной и гидрофобной поверхности с размещением на границе ферментных комплексов, рецепторная роль включений в мембрану, структурная. Функциональная специализация мембран клетки из-за отличия молекулярного состава. Молекулярная организация – бимолекулярный слой липидов, гидрофобные участки обращены друг к другу, гидрофильные – на поверхности слоя. Белковые молекулы встроены в слой или размещены на его поверхностях. Сложные структуры – гликопротеиды. Металлопротеиды. Глико-липиды как компоненты мембран, обеспечивающие специализацию.

  1. Что такое органеллы и включения? Какова их роль в клетке?

  2. В чём сходство и различие между растительными и животными клетками?

Признаки

Растительная клетка

Животная клетка

Пластиды

Хлоропласты, хромопласты, лейкопласты

Отсутствуют

Способ питания

Автотрофный (фототрофный, хемотрофный)

Гетеротрофный (сапротрофный, паразитический)

Синтез АТФ

В хлоропластах, митохондриях

В митохондриях

Расщепление АТФ

В хлоропластах и всех частях клетки, где необходимы затраты энергии

Во всех частях клетки, где необходимы затраты энергии

Клеточный центр

У низших растений

Во всех клетках

Целлюлозная

клеточная стенка

Расположена снаружи от клеточной мембраны

Отсутствует

Включения

Запасные питательные вещества в виде зёрен крахмала, белка, капель масла; вакуоли с клеточным соком; кристаллы солей

Запасные питательные вещества в виде зёрен и капель (белки, жиры, углеводы, гликоген); конечные продукты обмена, кристаллы солей, пигменты

Вакуоли

Крупные полости, заполненные клеточным соком – водным раствором различных веществ (запасные или конечные продукты). Осмотические резервуары клетки.

Сократительные, пищеварительные, выделительные вакуоли. Обычно мелкие.

  1. Какова молекулярная организация и свойства нуклеиновых кислот?

  2. Как организован наследственный материал у про- и эукариот?

Генетический материал у эукариот представлен ДНК. Общим является принцип записи и генетический код. Единица – нуклеотид. Выделяют уникальные, высоко и средне повторяющиеся. Наследственный материал эукариот больше по объему, чем у прокариот. Он расположен в особых ядерных структурах – хромосомах, которые отделены от цитоплазмы ядерной оболочкой. Структуры, необходимые для синтеза белка находится в цитоплазме и включает рибосомы, тРНК, аминокислоты и ферменты. Отличия в молекулярной структуре генов эукариотов в том, что кодирующие последовательности –экзоны, прерываются интронами – участками, не использующимися при синтезе РНК и пептидов.. Т.о. в прокариотической клетке транскрипция и трансляция происходит одновременно. В эукариотической - они протекают в разных местах (транскрипция в ядре, трансляция в цитоплазме) и разделены процессингом – в результате которого удаляются интроны, а экзоны сшиваются между собой – сплайсинг.

  1. Что такое ген и какова его структура?

Ген – наследственный фактор. Функционально не делимая единица генетич. материала, участок молекулы ДНК, кодирующий первичную стр-ру полипептида молекулы Т-РКК (Р-РНК) или взаимодействующим с регуляторным белком. Совокупность генов – генотип.

  1. Что такое генетический код, его свойства?

Генетический код: Свойственная живым орг-ма единая система записи наследственной информации в молекулах нуклеиновых к-т в виде последовательности нуклеотидов. Определяет последовательность включения аминокислот в синтезирующуюся цепь в соответствии с последовательностью нуклеотидов ДНК гена.

Св-ва генетического кода триплетность – каждая аминокислота кодируется тремя нуклеотидами, кодоны 1-го гена не прерывается, вырожденность - аминокислотные остатки кодируются несколькими кодонами, однозначность – каждый отдельный кодон кодирует только 1-ин аминокислотный остаток, компактность – между кодонами и-РНК нет запятых (нуклеотидов, не входящих в последовательность кодонов данного гена), универсальность – ген. код одинаков для всех живых орг-в, прерывистость –между генами расположены триплеты – терминаторы, обозначающие окончание синтеза молекулы белка.

  1. Дайте характеристику этапов биосинтеза белка у про- и эукариот.

1. Транскрипция – считывание наследственной информации с определенного участка ДНК на иРНК. В результате – транскрипт или незрелая иРНК.

2. Процессинг (посттранскрипция) – созревание иРНК:

1) Вырезание интронов.

2) Сшивание экзонов – сплайсинг.

3) Присоединяется колпачок и PolyA.

3. Трансляция – построение молекулы полипептида:

1) Инициация.

2) Элонгация.

3) Терминация.

4. Посттрансляция – окончание образования молекулы белка.

У прокариот отсутствует процессинг.

  1. Каковы механизмы регуляции активности генов у прокариот (схема Жакоба и Моно)?

  2. Каковы особенности регуляции работы генов у эукариот?

1)нет оперонной организации генов.2) Гены, определяющие синтез ферментов рассеяны в геноме. 3)Регуляция транскрипции является комбинационной, т.е. активность каждого гена регулируется большим числом генов-регуляторов. (промотор и энхансер) 4)белки-регуляторы контролируют транскрипцию генов, кодирующих другие белки-регуляторы 5)гормоны – индукторы транскрипции 6) процесс компактизации и декомпактизации хроматина 7) обратная связь между процессингом, сплайсингом и экзон-интронной организацией генов – например изменение схемы сплайсинга при синтезе антител

  1. Жизненный цикл клеток. Митотический цикл, его периоды. Стволовые (резервные) клетки. Дифференцировка и гибель клеток.

Жизненный цикл клеток – период существования от образования клетки до ее собственного деления или гибели:фаза деления, фаза роста, фаза покоя, фаза специализации или дифференциации, фаза зрелости, фаза старения, деление или гибель.

Митотический цикл.

Митоз - непрямое деление клетки, в результате которого сначала происходит удвоение наследственного материала, а затем его равномерное распределение между двумя дочер­ними клетками. На процесс деления клетки митозом уходит 1-3 часа. Промежуток между двумя клеточными делениями называют интер­фазой, продолжительность которой обычно занимает около 90% времени клеточного цикла (рис. 4. 25).

Интерфаза состоит из трех периодов.

пресинтетический период (G1), который начинается сра­зу же за завершением предыдущего митоза. В этот период в клетке синтезируются РНК и белки, образуется достаточноечисло органоидов, клетка растет. Количество генетического ма­териала в клетке не меняется. Число хромосом в клетке равно двойному, гаплоидному (2п), но каждая хромосома все еще состоит из одной хроматиды, то есть из одной молекулы ДНК.Таким образом, формула клетки в этот период — 2п2с;

синтетический период (S) характеризуется тем, что про­исходит удвоение молекул ДНК, и к концу этого периода каж­дая хромосома состоит из двух одинаковых хроматид, а значит, из двух абсолютно одинаковых молекул ДНК. Таким образом, формула клетки становится: 2п4с;в течение постсинтетического периода (G2) происходит подготовка клетки к делению: синтезируются белки, необхо­ ёдимые для образования веретена деления и для формирования хромосом; запасается АТФ. Формула клетки не меняется, оста­ ваясь 2п4с.

Непосредственно процесс деления клетки подразделяют на четыре фазы: профазу, метафазу, анафазу и телофазу В профазе происходит спирализация хромосом. Оболочка ядра разрушается. Центриоли расходятся к полюсам клетки. Формируется веретено деления — 2п4с.

В метафазе хромосомы располагаются в экваториальной плоскости клетки. Нити веретена деления прикрепляются к центромерам хромосом — 2п4с.

В анафазе центромеры делятся, и хроматиды хромосом рас­ходятся к полюсам клетки за счет укорочения нитей веретена деления. Формула клетки становится 4п4с.

В телофазе заканчивается кариокинез — деление ядра. Хромо­сомы деспирализуются, образуется ядерная оболочка. А далее происходит цитокинез — деление клетки. В конце телофазы из материнской клетки (4п4с) образуются две идентичные клет­ки с наборами генетического материала 2п2с.

Биологическое значение митоза в том, что в итоге его об­разуются две клетки с совершенно одинаковой наследственной информацией. Митоз позволяет увеличивать число клеток в организме, обеспечивая рост, вегетативное размножение, ре­генерацию и заживление повреждений тела.

Ствол клетки – камбиальные клетки, родоначальные в обновляющихся тканях животных (кроветворной, лимфоидной, эпидермисе, пищеварительном тракте и др.) Размножение и дифференцировка ствол. Кл-к восстанавливает потерю специализ. Кл-к при их естественной или аварийной гибели Ст. Кл-кт индивидуальны для каждого тканевого типа. Напр. из ст. кроветв кл-кт обр-ся эритроциты, лейкоциты или мегакариоциты

Дифференцировка – возникновение различий между однородными клетками и тканями в ходе развития особи, приводящие к формированию специализированных клеток, органов и тканей, т.е. приобретаются хим., морфологические и функцион. Особенности. Например мезодерма – нефротом – эпителий почек и семявыносящих путей. Гл факторы – различия цитоплазмы ранних эмбриональных клеток и специфические влияния соседних клеток – индукция. Молек-ген основа диф-ки – активность специф. для каждого вида ткани генов. Экспрессия гена в признак – сложный этапный процесс. Виды – обратимая и необратимая.

  1. Виды тканей по характеру клеточной пролиферации. Обновляющиеся, растущие и стабильные ткани, их характеристика. Митотический коэффициент.

Хар-ка уровня клеточной пролиферации:

1) Стабильные – все клетки находятся в состоянии необратимой дифференцировки

2) Растущие – кол-во клеток в тканях увеличивается т.к. доля клеток, идущих в митотический цикл превышает долю клеток идущих на дифференцировку

3) Обновляющиеся – происходит размножение клеток, однако общее кол-во клеток остается постоянным т.к. половина уходит в дифференцировку

Индекс Хейлика или митотический коэффициент (ск. раз клетка может делиться)

  1. Репликация ДНК у про- и эукариот. Удвоение хромосом. Изменение количества ДНК и набора хромосом в различные периоды жизненного цикла клеток.

РЕПЛИКАЦИЯ редупликация, ауторепликация, процесс самовоспроизведения макромолекул нуклеиновых к-т, обеспечивающий точное копи­рование генетич. информации и переда­чу её от поколения к поколению. В основе механизма Р. лежит ферментативный син­тез ДНК на матрице ДНК или РНК на матрице РНК. Важное место среди фер­ментов Р. занимает ДНК-зависимая ДНК-полимераза, ведущая синтез со скоростью около 1000 нуклеотидов в секун­ду (у бактерий). Р. ДНК полуконсерва­тивна,

т. е. при синтезе двух дочерних молекул ДНК каждая из них содержит одну «старую» и одну «новую» цепочку. Единица Р.— репликой. фрагменты, синтезируемые в ходе Р., на одной («от­стающей») цепи «сшиваются» ферментом ДНК-лигазой. При инициации каждого фрагмента синтезируется короткий учас­ток РНК, к-рый потом заменяется ДНК. Р. ДНК in vivo — очень точный процесс. Частота ошибок, приводящих к спонтан­ным точковым мутациям, не превышает 10~9 на нуклеотид на поколение. В Р. участвуют белки, расплетающие двойную спираль ДНК, стабилизирующие распле­тённые участки, предотвращающие запу­тывание молекул. Р. ДНК у эукариот происходит медленнее (ок. 100 нуклеоти­дов в секунду), но одновременно во мн. точках одной молекулы ДНК. Р. РНК ограничена узким кругом РНК, содержащих вирусов. Р. наз. также удвоение хро­мосом, в основе к-рого лежит Р. ДНК.

См. вопрос 16 и тетрадь.

  1. Уровни организации хромосом эукариот. Изменения организации (спирализации) хромосом в митотическом цикле клеток.

  2. Митоз, характеристика фаз митоза. Значение митоза. Эндомитоз, политения. Патологические виды деления клеток.

См. вопрос 16

Эндомито́з (от лат. эндо... и митоз) — процесс удвоения числа хромосом в ядрах клеток многих протистов, растений и животных, за которым не следует деления ядра и самой клетки. В процессе эндомитоза (в отличие от многих форм митоза) не происходит разрушения ядерной оболочки и ядрышка, не происходит образование веретена деления и не реорганизуется цитоплазма, но при этом (как и при митозе) хромосомы проходят циклы спирализации и деспирализации.

  1. Мейоз, характеристика фаз мейоза. Редукция и рекомбинация генетического материала в мейозе. Значение мейоза.

Мейоз - способ деления диплоидных клеток с образованием из одной материнской диплоидной клетки четырех дочер­них гаплоидных клеток.