- •1.1. Общая физиология нервной системы
- •1.1.1. Основные типы строения нервной системы
- •1.1.2. Мембранные потенциалы нервных элементов
- •1.1.3. Потенциалы и трансмембранные токи при возбуждении
- •1 М и толщиной 1 мкм выражается огромной цифрой - 10 Ом. Подобное сопротивление имел бы кабель длиной 10 км.
- •1.1.5. Межклеточные пространства в нервной системе
- •1.1.6. Аксонный транспорт
- •1.1.7. Физиология синапсов
- •1.1.8. Нервные сети и основные законы их функционирования
- •1.1.9. Рефлексы и рефлекторные дуги
- •1.1.10. Элементы эволюции нервной системы
- •1.2. Общая физиология мышц
- •1.2.1. Структура и иннервация поперечнополосатых мышц позвоночных животных
- •1.2.2. Механизм мышечного возбуждения
- •1.2.3. Передача сигнала с плазмалеммы на сократительный аппарат миофибрилл
- •1.2.4. Структура саркомера и механизм сокращения мышечного волокна
- •1.2.5. Механика мышцы
- •1.2.6. Энергетика мышцы
- •1.2.7. Особенности мышцы сердца позвоночных животных
- •1.2.8. Общая физиология гладких мышц позвоночных животных
- •1.2.9. Характеристика некоторых мышц беспозвоночных животных
- •1.2.10. Элементы эволюции мышц
- •1.2.11. Электрические органы рыб
- •1.2.12. Немышечные формы двигательной активности
- •1.3. Физиология секреторной клетки
- •1.3.1. Поступление предшественников секрета в клетку
- •1.3.2. Выведение веществ из клетки
- •2.1. Совершенствование регуляторных механизмов в процессе эволюции
- •2.2. Характеристика гуморальных механизмов регуляции
- •2.2.1. Основные особенности эволюции гормональных регуляторных механизмов
- •2.2.2. Регуляция функций эндокринной системы
- •2.2.3. Функциональное значение гормонов
- •2.2.4. Механизм действия гормонов
- •2.2.5. Классификация гормонов
- •2.3. Единство нервных и гуморальных механизмов регуляции
- •2.3.1. Саморегуляция функций организма
- •2.3.2. Обратная связь как один из ведущих механизмов в регуляции функций организма
- •2.3.3. Рефлекторный принцип регуляции функций
- •2.4. Общие черты компенсаторно-приспособительных реакций организма
- •3.1.2. Нервная система позвоночных животных
- •3.2.2. Принцип общего конечного пути
- •3.2.3. Временная и пространственная суммация. Окклюзия
- •3.2.5. Принцип доминанты
- •3.3. Спинной мозг
- •3.3.1. Нейронные структуры и их свойства
- •3.3.2. Рефлекторная функция спинного мозга
- •3.3.3. Проводниковые функции спинного мозга
- •3.4.2. Рефлексы продолговатого мозга
- •3.4.3. Функции ретикулярной формации стволовой части мозга
- •3.5.2. Участие среднего мозга в регуляции движений и позного тонуса
- •3.7.2. Морфофункциональная организация таламуса
- •3.7.3. Гипоталамус
- •3.7.4. Роль гипоталамуса в регуляции вегетативных функций
- •3.7.5. Терморегуляционная функция гипоталамуса
- •3.7.6. Участие гипоталамуса в регуляции поведенческих реакций
- •3.7.7. Гипоталамо-гипофизарная система
- •3.8.2. Функции лимбической системы
- •3.8.3. Роль лимбической системы в формировании эмоций
- •3.9. Базальные ядра и их функции
- •3.10.2. Проекционные зоны коры
- •3.10.3. Колончатая организация зон коры
- •3.11.2. Метод вызванных потенциалов
- •3.12. Закономерности эволюции коры больших полушарий
- •3.12.1. Происхождение новой коры
- •3.12.2. Организация новой коры у низших млекопитающих
- •3.12.3. Организация новой коры у высших млекопитающих
- •3.12.5. Развитие корковых межнейронных связей
- •3.13. Наследственно закрепленные формы поведения
- •3.13.1. Безусловные рефлексы.
- •3.13.2. Достижения этологов в исследовании врожденных форм поведения
- •3.14. Приобретенные формы поведения
- •3.14.1. Классификация форм научения
- •3) После исчезновения эти навыки самостоятельно не восстанавливаются.
- •3.14.2. Сон как форма приобретенного поведения
- •3.14.3. Закономерности условнорефлекторной деятельности
- •3.14.4. Торможение условных рефлексов
- •3.15.2. Механизмы условного торможения
- •3.16. Механизмы памяти
- •3.16.1. Кратковременная память
- •3.16.2. Долговременная память
- •3.17.2. Высшие интегративные системы мозга
- •3.17.4. Эволюция интегративной деятельности мозга
- •3.17.5. Онтогенез ассоциативных систем мозга
- •3.18. Функциональная структура поведенческого акта
- •3.18.1. Основные поведенческие доминанты
- •3) Описать структуру среды как закон связей между ее наиболее существенными переменными; 4) определить ведущее кинематическое звено для выполнения предстоящего двигательного акта.
- •3.18.2. Ассоциативные системы мозга и структура поведения
- •3.19.2. Сознание и неосознаваемое
- •3.20. Функциональная межполушарная асимметрия
- •3.21. Формирование высшей нервной деятельности ребенка
- •3.22. Мышление и речь
- •3.23. Сновидения, гипноз
- •3.24. Трудовая деятельность человека-оператора
- •3.25. Центральная регуляция движений
- •3.25.1. Управление ориентационными движениями и позой
- •3.25.2. Управление локомоцией
- •3.25.3. Организация манипуляторных движений
- •3.25.4. Корковая сенсомоторная интеграция
- •3.25.5. Программирование движений
- •3.25.6. Функциональная структура произвольного движения
- •3.26. Эмоции как компонент целостных поведенческих реакций
- •3.26.1. Биологическая роль эмоций
- •3.26.2. Эмоции и психическая деятельность
- •3.26.3. Вегетативные реакции, сопутствующие эмоциональному состоянию
- •3.26.4. Участие различных структур мозга в формировании эмоциональных состояний
- •3.26.5. Эмоциогенные системы мозга
- •3.26.6. Влияние эмоциональных состояний на научение и память
- •3.26.7. Неврозы
- •3.27. Гематоэнцефалический барьер
- •4.1.2. Преобразование сигналов в рецепторах
- •4.1.3. Адаптация рецепторов
- •4.1.4. Сенсорные пути
- •4.1.5. Сенсорное кодирование
- •4.2. Соматическая сенсорная система
- •4.2.1. Соматическая сенсорная система беспозвоночных животных
- •4.2.2. Соматическая сенсорная система позвоночных животных
- •4.3. Скелетно-мышечная, или проприоцептивная, сенсорная система
- •4.3.1. Скелетно-мышечная сенсорная система беспозвоночных животных
- •4.3.2. Скелетно-мышечная сенсорная система позвоночных животных
- •4.4. Сенсорная система боковой линии
- •4.4.2. Электрорецепторы
- •4.4.3. Восходящие пути
- •4.5. Гравитационная сенсорная система
- •4.5.1. Гравитационная сенсорная система беспозвоночных животных
- •4.5.2. Гравитационная сенсорная система позвоночных животных
- •4.6. Слуховая сенсорная система
- •4.6.1. Физические характеристики звуковых сигналов
- •4.6.2. Слуховая сенсорная система беспозвоночных животных
- •4.6.3. Слуховая сенсорная система позвоночных животных
- •4.6.4. Эхолокация
- •4.7. Хеморецепторные сенсорные системы
- •4.7.1. Хеморецепторные сенсорные системы беспозвоночных животных
- •4.7.2. Хеморецепторные сенсорные системы позвоночных животных
- •4.8. Зрительная сенсорная система
- •4.8.1. Организация фоторецепторов
- •4.8.2. Механизмы фоторецепции
- •4.8.3. Зрительная сенсорная система беспозвоночных животных
- •4.8.4. Зрительная сенсорная система позвоночных животных
- •5.1. Дуга автономного рефлекса
- •5.1.1. Подразделение автономной нервной системы
- •5.1.2. Анатомические структуры
- •5.1.4. Различия в конструкции автономной и соматической нервной системы
- •5.1.5. Чувствительное звено дуги автономного рефлекса
- •5.1.6. Ассоциативное (вставочное) звено
- •5.1.7. Эфферентное звено
- •5.2. Синаптическая передача
- •5.2.1. Ацетилхолин
- •5.2.2. Норадреналин и адреналин
- •5.2.3. Трансдукторы
- •5.2.4. Серотонин
- •5.2.5. Аденозинтрифосфат (атф)
- •5.2.6. Вероятные кандидаты в медиаторы
- •5.2.7. Активные факторы
- •5.3.2. Аксон-рефлекс
- •5.3.3. Висцеросоматический рефлекс
- •5.3.4. Висцеросенсорный рефлекс
- •5.4. Влияние автономной нервной системы на деятельность эффекторных органов
- •5.4.1. Адаптационно-трофическая функция симпатической нервной системы
- •5.4.2. Роль парасимпатической нервной системы в регуляции висцеральных функций
- •5.4.3. Участие метасимпатической нервной системы в регуляции висцеральных функций
- •5.4.4. Тоническая активность
- •5.5.2. Стволовые центры
- •5.5.3. Гипоталамические центры
- •5.5.4. Лимбическая система
- •5.5.5. Мозжечок
- •5.5.6. Ретикулярная формация
- •5.5.7. Кора больших полушарий
- •6.1. Значение и место эндокринной регуляции в общей системе интеграционных механизмов
- •6.1.1. Методы изучения функций желез внутренней секреции
- •6.1.2. Понятие о нейросекреции
- •6.2.1. Гипоталамо-нейрогипофизарная система
- •6.2.2. Гипоталамо-аденогипофизарная система
- •6.2.3. Гипофиз
- •6.2.4. Шишковидное тело
- •6.3.2. Надпочечник и его гормоны
- •6.3.3. Гонады и половые гормоны
- •6.4.2. Гормональная регуляция водно-солевого гомеостаза
- •6.5. Поджелудочная железа и ее гормоны
- •6.6. Гормоны пищеварительного тракта
- •6.7. Гормоны сердечно-сосудистой системы
- •6.7.1. Гормоны сердца
- •6.7.2. Гормоны эндотелия
- •6.8. Гормоны плазмы и клеток крови
- •6.9. Гормонопоэз и основные механизмы трансдукции гормонального сигнала
- •6.10. Рецепторы гормонов
- •7.1. Эволюция внутренней среды организма
- •7.2. Основные механизмы поддержания постоянства внутренней среды организма. Понятие о гомеостазе
- •7.3. Понятие о системе крови
- •7.3.1. Основные функции крови
- •7.3.2. Объем и состав крови
- •7.3.3. Физико-химические свойства крови
- •7.4. Плазма крови
- •5 Г глобулина. Период полураспада альбумина составляет 10-15 сут глобулина - 5 сут.
- •7.5. Форменные элементы крови
- •7.5.1. Эритроциты
- •7.5.2. Пигменты крови
- •7.5.3.Скорость оседания эритроцитов (соэ)
- •7.5.4. Лейкоциты
- •7.5.5. Тромбоциты
- •7.6. Гемостаз (остановка кровотечения)
- •7.6.1. Свертывание крови
- •7.6.3. Противосвертывающие механизмы
- •7.7. Группы крови
- •7.7.2. Резус-фактор
- •7.8. Кроветворение и его регуляция
- •7.8.1. Эритропоэз
- •7.8.2. Лейкопоэз. Тромбоцитопоэз
- •7.9. Лимфа
- •8.1. Компоненты иммунной системы
- •8. 2. Механизмы неспецифического (врожденного) иммунитета
- •8.2.1. Фагоцитоз
- •8.2.2. Внеклеточное уничтожение (цитотоксичность)
- •8.2.3. Разрушение чужеродных клеток с помощью гуморальных механизмов
- •8.2.4. Роль острой воспалительной реакции в механизмах неспецифической резистентности организма
- •8.3. Механизмы специфического приобретенного иммунитета
- •8.3.1. Характеристика клеток, участвующих в реакциях специфического иммунитета
- •8.3.2. Иммуноглобулины, структура и роль в реализации специфического иммунного ответа
- •8.4.2. Участие цитокинов в регуляции иммунных реакций
- •8.4.4. Регуляторные иммунонейроэндокринные сети
- •9.2. Функции сердца
- •9.2.1. Общие принципы строения
- •9.2.2. Свойства сердечной мышцы
- •9.2.3. Механическая работа сердца
- •9.2.4. Тоны сердца
- •9.2.5. Основные показатели деятельности сердца
- •9.4. Регуляция работы сердца
- •9.4.1. Внутриклеточная регуляция
- •9.4.2. Межклеточная регуляция
- •9.4.3. Внутрисердечная нервная регуляция
- •9.4.4. Экстракардиальная нервная регуляция
- •9.4.5. Гуморальная регуляция
- •9.4.6. Тонус сердечных нервов
- •9.4.7. Гипоталамическая регуляция
- •9.4.8. Корковая регуляция
- •9.4.9. Рефлекторная регуляция
- •9.4.10. Эндокринная функция сердца
- •9.5. Сосудистая система
- •9.5.1. Эволюция сосудистой системы
- •9.5.2. Функциональные типы сосудов.
- •9.5.3. Основные законы гемодинамики
- •9.5.4. Давление в артериальном русле
- •9.5.5. Артериальный пульс
- •9.5.6. Капиллярный кровоток
- •9.5.7. Кровообращение в венах
- •9.6. Регуляция кровообращения
- •9.6.1. Местные механизмы регуляции кровообращения
- •9.6.2. Нейрогуморальная регуляция системного кровообращения
- •9.7. Кровяное депо
- •9.8.2. Мозговое кровообращение
- •9.8.3. Легочное кровообращение
- •9.8.4. Кровообращение в печени
- •9.8.5. Почечное кровообращение
- •9.8.6. Кровообращение в селезенке
- •9.9. Кровообращение плода
- •9.10.3. Состав, свойства, количество лимфы
- •9.10.4. Лимфообразование
- •9.10.5. Лимфоотток
- •10.1. Эволюция типов дыхания
- •10.1.1. Дыхание беспозвоночных животных
- •10.1.2. Дыхание позвоночных животных
- •10.2. Дыхательный акт и вентиляция легких
- •10.2.1. Дыхательные мышцы
- •10.2.2. Дыхательный акт
- •10.2.3. Вентиляция легких и внутрилегочный объем газов
- •10.2.4. Соотношение вентиляции и перфузии легких
- •10.2.5. Паттерны дыхания
- •10.3.1. Диффузия кислорода и углекислого газа через аэрогематический барьер
- •10.3.2. Транспорт кислорода кровью
- •10.3.3. Транспорт углекислого газа кровью
- •10.3.4. Транспорт кислорода и углекислого газа в тканях
- •10.4.2. Хеморецепторы и хеморецепторные стимулы дыхания
- •10.4.3. Механорецепторы дыхательной системы
- •10.4.4. Роль надмостовых структур
- •10.5.2. Влияние уровня бодрствования
- •10.5.3. Эмоциональные и стрессорные факторы
- •10.5.4. Мышечная деятельность
- •11.1. Источники энергии и пути ее превращения в организме
- •11.1.1. Единицы измерения энергии
- •11.1.3.Методы исследования обмена энергии
- •11.1.4. Основной обмен
- •11.1.5. Обмен в покое и при мышечной работе
- •11.1.7. Запасы энергии
- •11.2. Питание
- •11.2.1. Потребность в пище и рациональное питание
- •11.2.2. Потребность в воде
- •11.2.3. Потребность в минеральных веществах
- •11.2.4. Потребность в углеводах
- •11.2.5. Потребность в липидах
- •11.2.6. Потребность в белках
- •11.2.7. Потребность в витаминах
- •11.2.8. Потребность в пищевых волокнах
- •11.3. Терморегуляция
- •11.3.1. Пойкилотермия и гомойотермия
- •11.3.2. Температура тела
- •11.3.3. Терморецепция, субъективные температурные ощущения и дискомфорт
- •11.3.4. Центральные (мозговые) механизмы терморегуляции
- •11.3.5. Теплопродукция
- •11.3.6. Теплоотдача
- •11.3.9. Тепловая и холодовая адаптация
- •11.3.10. Сезонная спячка
- •11.3.11. Онтогенез терморегуляции
- •11.3.12. Лихорадка
- •12.1.2. Регуляторная часть пищеварительной системы
- •12.1.3. Интеграция нейромедиаторных и гормональных факторов в пищеварительной cистеме
- •12.1.4. Типы пищеварения
- •12.2. Секреторная функция
- •12.2.1. Слюнные железы
- •12.2.2. Железы желудка
- •12.2.3. Поджелудочная железа
- •12.2.4. Желчеотделение и желчевыделение
- •12.2.5. Секреция кишечных желез
- •12.3. Переваривание пищевых веществ
- •12.4. Мембранное пищеварение и всасывание
- •12.4.2. Всасывание
- •12.5. Моторная функция
- •12.5.1. Сопряжение возбуждения с сокращением в гладкомышечных клетках
- •12.5.2. Регуляция сократительной активности гладких мышц желудочно-кишечного тракта
- •12.5.3. Моторная функция различных отделов желудочно-кишечного тракта
- •12.5.4. Периодическая моторная деятельность желудочно-кишечного тракта
- •12.6.2. Насыщение
- •13.1. Водные фазы
- •13.2. Эволюция осморегуляции
- •13.3. Выделительные органы беспозвоночных животных различных типов
- •13.4. Почка позвоночных животных
- •13.5. Структура и функции почки млекопитающих
- •13.6.2. Клубочковая фильтрация
- •13.6.3. Реабсорбция в канальцах
- •13.6.5. Синтез веществ в почке
- •13.6.6. Осмотическое разведение и концентрирование мочи
- •13.6.7. Роль почек в осморегуляции и волюморегуляции
- •13.6.8. Механизм участия почек в регуляции кислотно-основного равновесия
- •13.6.9. Экскреторная функция почки
- •13.7. Нервная регуляция деятельности почки
- •13.8. Инкреторная функция почки
- •13.9. Метаболическая функция почки
- •13.10. Выделение мочи
- •14.2. Мужские половые органы
- •14.4. Половое созревание
- •14.5. Половое влечение
- •14.6. Половой акт
- •14.7. Половая жизнь
- •1) Парасимпатические из крестцового отдела (рефлекторные и психогенные влияния); 2) симпатические из пояснично-грудного отдела (психогенные влияния)
- •14.8.2. Половые рефлексы у женщин
- •14.9. Половой цикл
- •14.10. Оплодотворение
- •14.11. Беременность
- •14.11.1. Плацента
- •14.11.2. Плод
- •14.11.3. Состояние организма матери при беременности
- •14.11.4. Многоплодная беременность
- •14.11.5. Латентная стадия беременности
- •14.11.6. Беременность у животных
- •14.12. Роды
- •14.13.2. Физиология органов размножения самок
- •14.13.3. Инкубация
- •14.14. Лактация
- •15.2. Проявления старения
- •15.3. Профилактика старения
9.4.10. Эндокринная функция сердца
Известно, что мышечные клетки предсердий секретируют специфический гормон - атриальный натрийуретический пептид. Его выделение стимулируется растяжением предсердий, возникающим в результате притока крови, изменением в ней уровня натрия, а также симпатическими и парасимпатическими влияниями и содержанием в крови вазопрессина. Натрийуретический гормон характеризуется широким спектром биологической активности. Он обладает способностью отчетливого повышения почками экскреции ионов Na+ и Cl-, подавляя реабсорбцию этих ионов в канальцах нефронов. Влияние гормона на диурез происходит также за счет увеличения клубочковой фильтрации и подавления реабсорбции воды в канальцах. Гормон расслабляет гладкие мышцы стенки пищеварительного тракта и мелких сосудов. Последнее способствует снижению артериального давления. Гормон подавляет секрецию ренина, тормозит действие альдостерона и ангиотензина II.
9.5. Сосудистая система
Присущие крови функции могут выполняться только при условии ее постоянного движения по кровеносным сосудам. У позвоночных животных кровь находится в системе эластичных сосудов - артерий, вен, капилляров, - не выходя из этой системы. Основные структуры сосудистой системы млекопитающих представлены на рис. 9.28. В связи с тем, что кровь всегда остается внутри замкнутого объема, систему кровообращения позвоночных, головоногих моллюсков (осьминога), иглокожих принято называть замкнутой. В отличие от позвоночных у насекомых, большинства ракообразных, многих моллюсков и оболочечников кровеносные сосуды обрываются, и кровь, прежде чем вновь вернуться к сердцу, свободно распределяется между тканями. Такая система кровообращения получила название незамкнутой.
Рис. 9.28 Основные структуры, сосудистой системы млекопитающих
Кровь поступает из крупных артерий в крупные вены через микроциркуляторные русла; в. д. - внутренний диаметр; А-В - артерио-венозный.
Замкнутая система характеризуется тем, что давление в ней относительно велико и постоянно. Для поддержания давления в промежутках между сердечными сокращениями в системе необходимо наличие эластических стенок. Помимо того, потребности в кровоснабжении разных органов не только различны но постоянно изменяются в зависимости от деятельности снабжаемых кровью органов. Отсюда становится необходимым существование ряда специальных контролирующих и регулирующих механизмов. Наконец, в замкнутой системе кровь быстро возвращается к сердцу.
В незамкнутой системе давление, как правило, небольшое и создание в ней высокого давления невозможно. Невозможно также поддержание и постоянного давления. Распределение крови между органами в этой системе является труднорегулируемым процессом. В отличие от замкнутой системы кровь в ней возвращается к сердцу медленно.
9.5.1. Эволюция сосудистой системы
У кишечнополостных и низших червей еще нет кровеносной системы в принятом понимании этого слова. Жидкость, посредством которой осуществляются транспортные функции, находится в системе специальных, густо разветвляющихся в теле животного каналов. Каждый из каналов одним концом соединяется с первичной полостью. Жидкость в каналах перемешивается благодаря общим движениям тела и деятельности мерцательного эпителия, выстилающего стенки канальцев. По существу, у этих животных имеет место не циркуляция крови, а лишь перемешивание тканевой жидкости.
Впервые примитивная система кровообращения, специально предназначенная для перемещения жидкости, появляется у кольчатых червей. Характерным для этой системы является возникновение перистальтических сокращений сосудистых трубок, перегоняющих жидкость. Однако у этой системы отсутствует капиллярная часть и артериальные сосуды открываются непосредственно в межтканевые пространства - лакуны. Здесь "кровь" смешивается с тканевой жидкостью и, пропитывая ткани, соприкасается непосредственно с каждой клеткой. Из этих же пространств берут начало вены. Следовательно, у червей сосуды являются не более как приносящими и коллекторными трубками.
Дальнейшее совершенствование организации сосудистой системы шло в трех направлениях. Во-первых, происходило обособление сократительных элементов стенки сосудов в специальной насосный орган - сердце. Во-вторых, развивалась капиллярная сеть и происходило превращение лакунарной системы в замкнутую кровеносную систему. В-третьих, происходило разделение циркулярной системы на две специализированные части, одна из которых снабжала кровью органы и ткани - большой круг, другая предназначалась для обогащения крови кислородом - малый круг.
У моллюсков, хотя сосудистая система остается лакунарной, уже появляется полый орган - сердце, состоящий из двух камер, имеющих собственный ритм сокращения и отличающийся от пульсирующей трубки червей. Следующим этапом эволюции явилось образование у рыб полностью дифференцированного двухкамерного сердца и замкнутой сосудистой системы. Однако у них нет разделения кровообращения на малый и большой круги, и сердце просто располагается в венозной части кровяного русла. Из желудочков кровь у рыб поступает непосредственно в жаберные сосуды. Последние распадаются на капилляры, где и происходит обмен газов. Капилляры жабр соединяются снова, образуя аорту, по которой кровь распределяется по органам и тканям.
Основным эволюционным приобретением двоякодышащих рыб явилось то, что в дополнение к жабрам дыхательными органами, связанными с системой кровообращения, становятся и легкие. Жабры у них получают частично кровь, которая уже прошла легкие, но жаберные дуги дегенерировали и по некоторым из них кровь проходит транзитом, не задерживаясь для газообмена. Претерпело изменение и строение сердца. Предсердие полностью разделено на две камеры. Частичному разделению подвергся желудочек, напоминая этим сердце млекопитающих и отличаясь от стоящих на более высокой ступени эволюционной иерархии амфибий. У двоякодышащих рыб обогащенная кислородом кровь переносится из легких в левое предсердие, венозная кровь поступает из большого круга кровообращения в правое предсердие. Частичное разделение желудочка не позволяет крови полностью смешиваться, и, таким образом, более оксигенированная кровь направляется в голову, менее насыщенная кислородом из правой половины сердца попадает в спинную аорту и частично в легкие.
Следовательно, на этом этапе эволюции был сделан первый шаг к разделению кровообращения на легочный круг и круг кровообращения через остальные органы.
. У современных земноводных (лягушек, саламандр) сердце состоит из разделенных предсердий и одного неразделенного желудочка. Правое предсердие получает венозную кровь и проталкивает ее в желудочек. Из желудочка кровь поступает в аорту, вблизи основания которой расположено пульсирующее утолщение с внутренней спиральной перегородкой. Благодаря этому приспособлению кровяной поток распределяется по двум направлениям. Одна часть идет в легочную артерию, другая - непосредственно к органам, т. е. в большой круг кровообращения. Пройдя через систему легочных капилляров, кровь возращается в левое предсердие и отсюда снова попадает в левый желудочек и аорту. Легочные артерии посылают ветви также в кожу, что имеет большое значение, так как кожа земноводных играет значительную роль в поглощении кислорода.
Следовательно, у земноводных малый круг кровообращения является лишь ответвлением от общей системы циркуляции.
В результате особенностей устройства кровеносного русла у земноводных в желудочек из левого предсердия поступает оксигенированная кровь и одновременно из правого предсердия - восстановленная. И хотя в желудочке перегородка отсутствует, полного смешивания артериальной и венозной крови в нем не происходит. В связи с расположением на эндотелиальной поверхности желудочков особых выростов поток крови из правого предсердия по правой половине сердца направляется в легочную артерию, из левого предсердия - непосредственно к органам тела.
У рептилий (ящериц, змей) практически заканчивается процесс дифференциации сердца на правую и левую половины. Предсердия у рептилий (за исключением крокодилов) разделены полностью, а в перегородке между желудочками существует отверстие. Даже при этих условиях потоки насыщенной и бедной кислородом крови хорошо отделяются друг от друга и перемешивания крови в обычных условиях существования почти не бывает. В соответствии с этим возникает практически полное разделение кровообращения на большой и малый круги.
У млекопитающих большой круг кровообращения начинается от левого желудочка сердца аортой, которая ветвится на многочисленные артерии, дающие начало регионарным сосудистым сетям. По мере ветвления число артерий возрастает, диаметр их уменьшается. Эти артерии снабжают кровью каждый отдельный орган (кожу, мышцы, печень, сердце, легкие, мозг и т. д.). В толще органов мельчайшие артерии (артериолы) формируют густое сплетение мелких сосудов с тонкими стенками - капиллярную сеть. Именно здесь происходит обмен веществами вены между клетками и кровью. Общая площадь поверхности всех капилляров организма достигает у человека 1000 м2. Сливаясь между собой, капилляры образуют венулы. Процесс слияния заканчивается двумя большими венами - краниальной и каудальной полыми венами, впадающими в правое предсердие. Таково общее правило. Исключением являются кишка и селезенка; сосуды, несущие от них венозную кровь, разветвляются в печени еще на одну систему капилляров (портальное кровообращение), после чего кровь по печеночным венам попадает в каудальную полую вену (рис. 9.29).
Рис. 9.29 Кровообращение млекопитающего .
В процентах указано относительное содержание крови в различных участках сердечнососудистой системы.
Малый круг кровообращения начинается от правого желудочка легочной артерией, которая, разветвляясь, переходит в сосудистые сети легких и заканчивается легочными венами, впадающими в левое предсердие. В итоге оба круга кровообращения замыкаются. Легочная артерия - единственная в организме артерия, по которой из правого желудочка в
легкие течет венозная кровь, а легочная вена - единственная вена, по которой из легких в левое предсердие течет обогащенная кислородом артериальная кровь.
Помимо большого и малого круга кровообращения в организме существует система лимфатических сосудов (см. разд. 9.10). Эта система осуществляет резорбцию межклеточной жидкости и белка из тканей, образование лимфы и отведение ее в венозную систему. В органах наряду с кровеносными капиллярами существуют сети лимфатических капилляров, из которых начинаются лимфатические сосуды. Из сплетений мелких лимфатических сосудов формируются более крупные. Они отводят лимфу из органов к регионарным лимфатическим узлам. Пройдя через узлы, лимфа поступает в лимфатические стволы, а затем в грудной проток и правый лимфатический проток, впадающие в вены.
В процессе эволюции выделение лимфатической системы в самостоятельную происходит у рыб. У них она представлена лимфатическими мешками и сложноразветвленными трубками, периферические концы которых замкнуты, центральные - впадают в вены.
На всех более высоких ступенях эволюции - у птиц и млекопитающих - существует четырехкамерное сердце с полным отделением правой половины от левой и полным обособлением большого и малого кругов кровообращения (см. разд. 9.1). Различия между кровообращением птиц и млекопитающих касаются главным образом анатомии. У птиц, например, сохранилась правая дуга аорты, у млекопитающих - левая. Функциональным различием является то, что птицы, как и другие позвоночные, сохранили воротную систему почек (т. е. почки получают венозную кровь от задней половины тела). У млекопитающих почечная воротная система отсутствует.
